. . . "QUDT Quantity Kind Vocabulary Version 2.1.37" . . . . . "The \"Absolute Activity\" is the exponential of the ratio of the chemical potential to $RT$ where $R$ is the gas constant and $T$ the thermodynamic temperature."^^ . . . "http://goldbook.iupac.org/A00019.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\lambda_B = e^{\\frac{\\mu_B}{RT}}$, where $\\mu_B$ is the chemical potential of substance $B$, $R$ is the molar gas constant, and $T$ is thermodynamic temperature."^^ . "$\\lambda_B$"^^ . . "Absolute Activity"@en . . . "\"Absolute Humidity\" is an amount of water vapor, usually discussed per unit volume. Absolute humidity in air ranges from zero to roughly 30 grams per cubic meter when the air is saturated at $30 ^\\circ C$. The absolute humidity changes as air temperature or pressure changes. This is very inconvenient for chemical engineering calculations, e.g. for clothes dryers, where temperature can vary considerably. As a result, absolute humidity is generally defined in chemical engineering as mass of water vapor per unit mass of dry air, also known as the mass mixing ratio, which is much more rigorous for heat and mass balance calculations. Mass of water per unit volume as in the equation above would then be defined as volumetric humidity. Because of the potential confusion."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Humidity"^^ . "http://en.wikipedia.org/wiki/Humidity#Absolute_humidity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$AH = \\frac{\\mathcal{M}_\\omega}{\\vee_{net}}$,\nwhere $\\mathcal{M}_\\omega$ is the mass of water vapor per unit volume of total air and $\\vee_{net}$ is water vapor mixture."^^ . "AH" . . "Absolute Humidity"@en . . . . . "0112/2///62720#UAD372" . . "absolute typographic measurement" . . "\"Absorbed Dose\" (also known as Total Ionizing Dose, TID) is a measure of the energy deposited in a medium by ionizing radiation. It is equal to the energy deposited per unit mass of medium, and so has the unit \\(J/kg\\), which is given the special name Gray (\\(Gy\\))."^^ . . . . . . . . . "http://dbpedia.org/resource/Absorbed_dose"^^ . . "0112/2///62720#UAD000" . "http://en.wikipedia.org/wiki/Absorbed_dose"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$D = \\frac{d\\bar{\\varepsilon}}{dm}$, where $d\\bar{\\varepsilon}$ is the mean energy imparted by ionizing radiation to an element of irradiated matter with the mass $dm$."^^ . . "D" . "Note that the absorbed dose is not a good indicator of the likely biological effect. 1 Gy of alpha radiation would be much more biologically damaging than 1 Gy of photon radiation for example. Appropriate weighting factors can be applied reflecting the different relative biological effects to find the equivalent dose. The risk of stoctic effects due to radiation exposure can be quantified using the effective dose, which is a weighted average of the equivalent dose to each organ depending upon its radiosensitivity. When ionising radiation is used to treat cancer, the doctor will usually prescribe the radiotherapy treatment in Gy. When risk from ionising radiation is being discussed, a related unit, the Sievert is used." . . "Absorbed Dose"@en . . . "\"Absorbed Dose Rate\" is the absorbed dose of ionizing radiation imparted at a given location per unit of time (second, minute, hour, or day)."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "0112/2///62720#UAD001" . "http://www.answers.com/topic/absorbed-dose-rate"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\dot{D} = \\frac{dD}{dt}$, where $dD$ is the increment of absorbed dose during time interval with duration $dt$."^^ . "$\\dot{D}$"^^ . "\"Absorbed Dose Rate\" is the absorbed dose of ionizing radiation imparted at a given location per unit of time (second, minute, hour, or day)." . . . "Absorbed Dose Rate"@en . . "Absorptance is the ratio of the radiation absorbed by a surface to that incident upon it. Also known as absorbance."^^ . . . "http://en.wikipedia.org/wiki/Absorbance"^^ . "https://en.wikipedia.org/wiki/Absorptance"^^ . "https://www.researchgate.net/post/Absorptance_or_absorbance"^^ . "$\\alpha = \\frac{\\Phi_a}{\\Phi_m}$, where $\\Phi_a$ is the absorbed radiant flux or the absorbed luminous flux, and $\\Phi_m$ is the radiant flux or luminous flux of the incident radiation."^^ . "$\\alpha$"^^ . "Absorptance is the ratio of the radiation absorbed by a surface to that incident upon it. Also known as absorbance." . "belongs to SOQ-ISO" . . "Absorptance"@en . . "Acceleration is the (instantaneous) rate of change of velocity. Acceleration may be either linear acceleration, or angular acceleration. It is a vector quantity with dimension \\(length/time^{2}\\) for linear acceleration, or in the case of angular acceleration, with dimension \\(angle/time^{2}\\). In SI units, linear acceleration is measured in \\(meters/second^{2}\\) (\\(m \\cdot s^{-2}\\)) and angular acceleration is measured in \\(radians/second^{2}\\). In physics, any increase or decrease in speed is referred to as acceleration and similarly, motion in a circle at constant speed is also an acceleration, since the direction component of the velocity is changing."^^ . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Acceleration"^^ . . . "0112/2///62720#UAD002" . "http://en.wikipedia.org/wiki/Acceleration"^^ . . . "Beschleunigung"@de . "Pecutan"@ms . "Zrychlen\u00ED"@cs . "acceleratio"@la . "acceleration"@en . "accelerazione"@it . "accelera\u021Bie"@ro . "acc\u00E9l\u00E9ration"@fr . "aceleraci\u00F3n"@es . "acelera\u00E7\u00E3o"@pt . "ivme"@tr . "pospe\u0161ek"@sl . "przyspieszenie"@pl . "\u038C\u03B3\u03BA\u03BF\u03C2"@el . "\u0423\u0441\u043A\u043E\u0440\u0435\u0301\u043D\u0438\u0435"@ru . "\u0627\u0644\u062A\u0633\u0627\u0631\u0639"@ar . "\u0634\u062A\u0627\u0628"@fa . "\u0924\u094D\u0935\u0930\u0923"@hi . "\u52A0\u901F\u5EA6"@ja . "\u52A0\u901F\u5EA6"@zh . . "The acceleration of freely falling bodies under the influence of terrestrial gravity, equal to approximately 9.81 meters (32 feet) per second per second."^^ . . . . . . . . . . . . . . . . . "The acceleration of freely falling bodies under the influence of terrestrial gravity, equal to approximately 9.81 meters (32 feet) per second per second." . "g" . . "Acceleration Of Gravity"@en . . . "\"Acceptor Density\" is the number per volume of acceptor levels."^^ . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Acceptor Density\" is the number per volume of acceptor levels." . "n_a" . . "Acceptor Density"@en . . . "\"Acceptor Ionization Energy\" is the ionization energy of an acceptor."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Ionization_energy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Acceptor Ionization Energy\" is the ionization energy of an acceptor." . "E_a" . . "Acceptor Ionization Energy"@en . . . . "Chemicals or substances having a pH less than 7 are said to be acidic; lower pH means higher acidity."^^ . . . "https://en.wikipedia.org/wiki/Acid"^^ . "https://en.wikipedia.org/wiki/PH"^^ . "Chemicals or substances having a pH less than 7 are said to be acidic; lower pH means higher acidity." . . "Acidity"@en . . . "Acoustic impedance at a surface is the complex quotient of the average sound pressure over that surface by the sound volume flow rate through that surface."^^ . . . "http://en.wikipedia.org/wiki/Acoustic_impedance"^^ . "$Z_a= \\frac{p}{q} = \\frac{p}{vS}$, where $p$ is the sound pressure, $q$ is the sound volume velocity, $v$ is sound particle velocity, and $S$ is the surface area through which an acoustic wave of frequence $f$ propagates."^^ . "Acoustic impedance at a surface is the complex quotient of the average sound pressure over that surface by the sound volume flow rate through that surface." . "Z" . . "Acoustic Impediance"@en . . . "An action is usually an integral over time. But for action pertaining to fields, it may be integrated over spatial variables as well. In some cases, the action is integrated along the path followed by the physical system. If the action is represented as an integral over time, taken a the path of the system between the initial time and the final time of the development of the system.\nThe evolution of a physical system between two states is determined by requiring the action be minimized or, more generally, be stationary for small perturbations about the true evolution. This requirement leads to differential equations that describe the true evolution. Conversely, an action principle is a method for reformulating differential equations of motion for a physical system as an equivalent integral equation. Although several variants have been defined (see below), the most commonly used action principle is Hamilton's principle." . . . . "http://en.wikipedia.org/wiki/Action_(physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$S = \\int Ldt$, where $L$ is the Lagrange function and $t$ is time."^^ . "An action is usually an integral over time. But for action pertaining to fields, it may be integrated over spatial variables as well. In some cases, the action is integrated along the path followed by the physical system. If the action is represented as an integral over time, taken a the path of the system between the initial time and the final time of the development of the system.\nThe evolution of a physical system between two states is determined by requiring the action be minimized or, more generally, be stationary for small perturbations about the true evolution. This requirement leads to differential equations that describe the true evolution. Conversely, an action principle is a method for reformulating differential equations of motion for a physical system as an equivalent integral equation. Although several variants have been defined (see below), the most commonly used action principle is Hamilton's principle." . "S" . . "Action"@en . . . "Action Time (sec) " . . "Action Time"@en . . "\"Active Energy\" is the electrical energy transformable into some other form of energy."^^ . "active-energy" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=601-01-19"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$W = \\int_{t_1}^{t_2} p dt$, where $p$ is instantaneous power and the integral interval is the time interval from $t_1$ to $t_2$."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Active Energy\" is the electrical energy transformable into some other form of energy." . "W" . . "Active Energy"@en . . . . "$Active Power$ is, under periodic conditions, the mean value, taken over one period $T$, of the instantaneous power $p$. In complex notation, $P = \\mathbf{Re} \\; \\underline{S}$, where $\\underline{S}$ is $\\textit{complex power}$\"."^^ . . . . . . . . . . . . . . . . . . . . . "0112/2///62720#UAD003" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$P = \\frac{1}{T}\\int_{0}^{T} pdt$, where $T$ is the period and $p$ is instantaneous power."^^ . "P" . . "Active Power"@en . . . . . "\"Activity\" is the number of decays per unit time of a radioactive sample, the term used to characterise the number of nuclei which disintegrate in a radioactive substance per unit time. Activity is usually measured in Becquerels (\\(Bq\\)), where 1 \\(Bq\\) is 1 disintegration per second, in honor of the scientist Henri Becquerel."^^ . . . . . . . . . . . . . . "http://dbpedia.org/resource/Radioactive_decay"^^ . . "http://en.wikipedia.org/wiki/Mass_number"^^ . "http://en.wikipedia.org/wiki/Radioactive_decay"^^ . "http://en.wikipedia.org/wiki/Radioactive_decay#Radioactive_decay_rates"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$A = Z + N$, where $Z$ is the atomic number and $N$ is the neutron number.\n\nVariation $dN$ of spontaneous number of nuclei $N$ in a particular energy state, in a sample of radionuclide, due to spontaneous nuclear transitions from this state during an infinitesimal time interval, divided by its duration $dt$, thus $A = -\\frac{dN}{dt}$."^^ . . "A" . . "Activity"@en . . . "An \"Activity Coefficient\" is a factor used in thermodynamics to account for deviations from ideal behaviour in a mixture of chemical substances. In an ideal mixture, the interactions between each pair of chemical species are the same (or more formally, the enthalpy change of solution is zero) and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. "^^ . . . "http://en.wikipedia.org/wiki/Activity_coefficient"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$f_B = \\frac{\\lambda_B}{(\\lambda_B^*x_B)}$, where $\\lambda_B$ the absolute activity of substance $B$, $\\lambda_B^*$ is the absolute activity of the pure substance $B$ at the same temperature and pressure, and $x_B$ is the amount-of-substance fraction of substance $B$."^^ . "An \"Activity Coefficient\" is a factor used in thermodynamics to account for deviations from ideal behaviour in a mixture of chemical substances. In an ideal mixture, the interactions between each pair of chemical species are the same (or more formally, the enthalpy change of solution is zero) and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. " . "f_B" . . "Activity Coefficient"@en . . "The \"Activity Concentration\", also known as volume activity, and activity density, is ."^^ . . . . . . . "http://www.euronuclear.org/info/encyclopedia/activityconcentration.htm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$c_A = \\frac{A}{V}$, where $A$ is the activity of a sample and $V$ is its volume."^^ . "The \"Activity Concentration\", also known as volume activity, and activity density, is ." . "c_A" . . "Activity Concentration"@en . . "quantitative data of the radioactivity of the amount of a radionuclide in a particular state of energy at a defined point in time, divided by the related mass of this quantity"@en . . "quantitative Angabe der Radioaktivit\u00E4t einer Menge eines Radionuklids in einem bestimmten Energiezustand zu einem gegebenen Zeitpunkt dividiert durch die zugeh\u00F6rige Masse dieser Menge"@de . "0173-1#Z4-BAJ342#002" . . "activity related by mass"@en-US . . "\"Activity Thresholds\" are thresholds of sensitivity for radioactivity."^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\overline{T_t}$"^^ . "\"Activity Thresholds\" are thresholds of sensitivity for radioactivity." . . "Activity Thresholds"@en . . "\"Adaptation\" is the recovery of visual ability following exposure to light (dark adaptation), usually measured in units of time."^^ . . "http://en.wikipedia.org/wiki/Neural_adaptation#Visual"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Adaptation\" is the recovery of visual ability following exposure to light (dark adaptation)." . . "Adaptation"@en . . "\"Admittance\" is a measure of how easily a circuit or device will allow a current to flow. It is defined as the inverse of the impedance ($Z$). "^^ . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Admittance"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-51"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$Y = \\frac{1}{Z}$, where $Z$ is impedance."^^ . "$Y$"^^ . . "Admittance"@en . . . "The \"Alpha Disintegration Energy\" is the sum of the kinetic energy of the $\\alpha$-particle produced in the disintegration process and the recoil energy of the product atom in the reference frame in which the emitting nucleus is at rest before its disintegration."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "$Q_a$"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Alpha Disintegration Energy\" is the sum of the kinetic energy of the alpha-particle produced in the disintegration process and the recoil energy of the product atom in the reference frame in which the emitting nucleus is at rest before its disintegration." . . "Alpha Disintegration Energy"@en . . . "Altitude or height is defined based on the context in which it is used (aviation, geometry, geographical survey, sport, and more). As a general definition, altitude is a distance measurement, usually in the vertical or \"up\" direction, between a reference datum and a point or object. The reference datum also often varies according to the context. [Wikipedia]"^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Altitude"^^ . . "Altitude or height is defined based on the context in which it is used (aviation, geometry, geographical survey, sport, and more). As a general definition, altitude is a distance measurement, usually in the vertical or \"up\" direction, between a reference datum and a point or object. The reference datum also often varies according to the context. [Wikipedia]" . . "Altitude"@en . . . "The ambient pressure on an object is the pressure of the surrounding medium, such as a gas or liquid, which comes into contact with the object.\nThe SI unit of pressure is the pascal (Pa), which is a very small unit relative to atmospheric pressure on Earth, so kilopascals ($kPa$) are more commonly used in this context. "^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "p_a" . . "Ambient Pressure"@en . . . . "0112/2///62720#UAD370" . . "amount of biologically active substance" . . "\"Amount of Substance\" is a standards-defined quantity that measures the size of an ensemble of elementary entities, such as atoms, molecules, electrons, and other particles. It is sometimes referred to as chemical amount. The International System of Units (SI) defines the amount of substance to be proportional to the number of elementary entities present. The SI unit for amount of substance is \\(mole\\). It has the unit symbol \\(mol\\). The mole is defined as the amount of substance that contains an equal number of elementary entities as there are atoms in 0.012kg of the isotope carbon-12. This number is called Avogadro's number and has the value \\(6.02214179(30) \\times 10^{23}\\). The only other unit of amount of substance in current use is the \\(pound-mole\\) with the symbol \\(lb-mol\\), which is sometimes used in chemical engineering in the United States. One \\(pound-mole\\) is exactly \\(453.59237 mol\\)."^^ . . . . . . . . . . . "http://dbpedia.org/resource/Amount_of_substance"^^ . . "0112/2///62720#UAD004" . "http://en.wikipedia.org/wiki/Amount_of_substance"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . . "n" . . "Jumlah bahan"@ms . "L\u00E1tkov\u00E9 mno\u017Estv\u00ED"@cs . "Stoffmenge"@de . "amount of substance"@en . "anyagmennyis\u00E9g"@hu . "cantidad de sustancia"@es . "cantitate de substan\u021B\u0103"@ro . "liczno\u015B\u0107 materii"@pl . "madde miktar\u0131"@tr . "mno\u017Eina snovi"@sl . "quantidade de subst\u00E2ncia"@pt . "quantitas substantiae"@la . "quantit\u00E0 di sostanza"@it . "quantit\u00E9 de mati\u00E8re"@fr . "\u03A0\u03BF\u03C3\u03CC\u03C4\u03B7\u03C4\u03B1 \u039F\u03C5\u03C3\u03AF\u03B1\u03C2"@el . "\u041A\u043E\u043B\u0438\u0447\u0435\u0441\u0442\u0432\u043E \u0432\u0435\u0449\u0435\u0441\u0442\u0432\u0430"@ru . "\u041A\u043E\u043B\u0438\u0447\u0435\u0441\u0442\u0432\u043E \u0432\u0435\u0449\u0435\u0441\u0442\u0432\u043E"@bg . "\u05DB\u05DE\u05D5\u05EA \u05D7\u05D5\u05DE\u05E8"@he . "\u0643\u0645\u064A\u0629 \u0627\u0644\u0645\u0627\u062F\u0629"@ar . "\u0645\u0642\u062F\u0627\u0631 \u0645\u0627\u062F\u0647"@fa . "\u092A\u0926\u093E\u0930\u094D\u0925 \u0915\u0940 \u092E\u093E\u0924\u094D\u0930\u093E"@hi . "\u7269\u8CEA\u91CF"@ja . "\u7269\u8D28\u7684\u91CF"@zh . "chemical amount"@en . "jumlah kimia"@ms . "quantit\u00E0 chimica"@it . "quantit\u00E0 di materia"@it . . "\"Amount of Substance of Concentration\" is defined as the amount of a constituent divided by the volume of the mixture."^^ . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Amount_of_substance_concentration"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$C_B = \\frac{n_B}{V}$, where $n_B$ is the amount of substance $B$ and $V$ is the volume."^^ . "\"Amount of Substance of Concentration of B\" is defined as the amount of a constituent divided by the volume of the mixture." . . "C_B" . . "Amount of Substance of Concentration"@en . . "\"Amount of Substance of Concentration of B\" is defined as the amount of a constituent divided by the volume of the mixture."^^ . . "true"^^ . . "0112/2///62720#UAD005" . "http://en.wikipedia.org/wiki/Amount_of_substance_concentration"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$C_B = \\frac{n_B}{V}$, where $n_B$ is the amount of substance $B$ and $V$ is the volume."^^ . "\"Amount of Substance of Concentration of B\" is defined as the amount of a constituent divided by the volume of the mixture." . "C_B" . . "Amount of Substance of Concentration of B"@en . . "\"Fractional Amount of Substance\" is defined as tthe amount of a constituent divided by the total amount of all constituents in a mixture."^^ . . . "http://en.wikipedia.org/wiki/Amount_fraction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$x_B = \\frac{n_B}{n}$, where $n_B$ is the amount of substance $B$ and $n$ is the total amount of substance."^^ . "\"Fractional Amount of Substance\" is defined as tthe amount of a constituent divided by the total amount of all constituents in a mixture." . "X_B" . . "Fractional Amount of Substance"@en . . "\"Amount of Substance of Fraction of B\" is defined as tthe amount of a constituent divided by the total amount of all constituents in a mixture."^^ . . "true"^^ . . "http://en.wikipedia.org/wiki/Amount_fraction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$x_B = \\frac{n_B}{n}$, where $n_B$ is the amount of substance $B$ and $n$ is the total amount of substance."^^ . "\"Amount of Substance of Fraction of B\" is defined as tthe amount of a constituent divided by the total amount of all constituents in a mixture." . "X_B" . . "Amount of Substance of Fraction of B"@en . . . . . . . . . . . . . . . . "fix the numerator and denominator dimensions" . . "Amount of Substance per Unit Mass"@en . . "The \"Variation of Molar Mass\" of a gas as a function of pressure."^^ . . . . "The \"Variation of Molar Mass\" of a gas as a function of pressure." . . "Molar Mass variation due to Pressure"@en . . "The amount of substance per unit volume is called the molar density. Molar density is an intensive property of a substance and depends on the temperature and pressure."^^ . . . . . . . . . . . . . . . "http://www.ask.com/answers/72367781/what-is-defined-as-the-amount-of-substance-per-unit-of-volume"^^ . "https://en.wikipedia.org/wiki/Molar_concentration"^^ . "The amount of substance per unit volume is called the molar density. Molar density is an intensive property of a substance and depends on the temperature and pressure." . . "Amount of Substance per Unit Volume"@en . . . "The abstract notion of angle. Narrow concepts include plane angle and solid angle. While both plane angle and solid angle are dimensionless, they are actually length/length and area/area respectively."^^ . . . . . . . . . . . . . "http://dbpedia.org/resource/Angle"^^ . . . . "Angle"@en . . . "Angle of attack is the angle between the oncoming air or relative wind and a reference line on the airplane or wing."^^ . . . . . . . . . . . . . . "$\\alpha$"^^ . "Angle of attack is the angle between the oncoming air or relative wind and a reference line on the airplane or wing." . . "Angle Of Attack"@en . . . "The \"Angle of Optical Rotation\" is the angle through which plane-polarized light is rotated clockwise, as seen when facing the light source, in passing through an optically active medium."^^ . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Optical_rotation"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\alpha$"^^ . "The \"Angle of Optical Rotation\" is the angle through which plane-polarized light is rotated clockwise, as seen when facing the light source, in passing through an optically active medium." . . "Angle of Optical Rotation"@en . . . "Angular acceleration is the rate of change of angular velocity over time. Measurement of the change made in the rate of change of an angle that a spinning object undergoes per unit time. It is a vector quantity. Also called Rotational acceleration. In SI units, it is measured in radians per second squared (\\(rad/s^2\\)), and is usually denoted by the Greek letter alpha."^^ . . . . "U/T^2" . "$/s^2$"^^ . "http://dbpedia.org/resource/Angular_acceleration"^^ . . "0112/2///62720#UAD006" . . . . . "Accelera\u021Bie unghiular\u0103"@ro . "A\u00E7\u0131sal ivme"@tr . "Pecutan bersudut"@ms . "Przyspieszenie k\u0105towe"@pl . "Winkelbeschleunigung"@de . "accelerazione angolare"@it . "acc\u00E9l\u00E9ration angulaire"@fr . "aceleraci\u00F3n angular"@es . "acelera\u00E7\u00E3o angular"@pt . "angular acceleration"@en . "\u00DAhlov\u00E9 zrychlen\u00ED"@cs . "\u0423\u0433\u043B\u043E\u0432\u043E\u0435 \u0443\u0441\u043A\u043E\u0440\u0435\u043D\u0438\u0435"@ru . "\u062A\u0633\u0627\u0631\u0639 \u0632\u0627\u0648\u064A"@ar . "\u0634\u062A\u0627\u0628 \u0632\u0627\u0648\u06CC\u0647\u200C\u0627\u06CC"@fa . "\u0915\u094B\u0923\u0940\u092F \u0924\u094D\u0935\u0930\u0923"@hi . "\u89D2\u52A0\u901F\u5EA6"@ja . "\u89D2\u52A0\u901F\u5EA6"@zh . . . "\"Angular Cross-section\" is the cross-section for ejecting or scattering a particle into an elementary cone, divided by the solid angle $d\\Omega$ of that cone."^^ . . . "0112/2///62720#UAD007" . "http://en.wikipedia.org/wiki/Cross_section_(physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\sigma = \\int \\sigma_\\Omega d\\Omega$"^^ . "$\\sigma_\\Omega$"^^ . . "Angular Cross-section"@en . . . "Angular distance travelled by orbiting vehicle measured from the azimuth of closest approach."^^ . . . . . . . . . . . . . . "$\\theta$"^^ . "Angular distance travelled by orbiting vehicle measured from the azimuth of closest approach." . . "Angular Distance"@en . . . "\"Angular frequency\", symbol $\\omega$ (also referred to by the terms angular speed, radial frequency, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. Angular frequency (or angular speed) is the magnitude of the vector quantity angular velocity."^^ . . . . . . . . . . . "http://dbpedia.org/resource/Angular_frequency"^^ . . "http://en.wikipedia.org/wiki/Angular_frequency"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\omega = 2\\pi f$, where $f$ is frequency."^^ . "$\\omega$"^^ . "belongs to SOQ-ISO" . . "Kreisfrequenz"@de . "Pulsaci\u00F3n"@fr . "angular frequency"@en . "frequenza angolare"@it . "frequ\u00EAncia angular"@pt . "pulsaci\u00F3n"@es . "pulsacja"@pl . "\u062A\u0631\u062F\u062F \u0632\u0627\u0648\u0649"@ar . "\u89D2\u632F\u52D5\u6570"@ja . "\u89D2\u9891\u7387"@zh . "Pulsatanzpulsation"@de . "pulsatance"@en . "pulsazione"@it . "pulsa\u00E7\u00E3o"@pt . "\u0646\u0627\u0628\u0636"@ar . "\u89D2\u5468\u6CE2\u6570"@ja . "\u89D2\u901F\u5EA6"@zh . . . "The Angular Impulse, also known as angular momentum, is the moment of linear momentum around a point. It is defined as$H = \\int Mdt$, where $M$ is the moment of force and $t$ is time."^^ . . . . . . . "http://dbpedia.org/resource/AngularMomentum"^^ . . . "http://emweb.unl.edu/NEGAHBAN/EM373/note13/note.htm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "H" . . "Drehsto\u00DF"@de . "angular impulse"@en . "impulsion angulaire"@fr . "impulso angolare"@it . "impulso angular"@es . "impuls\u00E3o angular"@pt . "pop\u0119d k\u0105towy"@pl . "\u0646\u0628\u0636\u0629 \u062F\u0641\u0639\u064A\u0629 \u0632\u0627\u0648\u064A\u0629"@ar . "\u89D2\u51B2\u91CF;\u51B2\u91CF\u77E9"@zh . "\u89D2\u529B\u7A4D"@ja . "Drehmomentsto\u00DF"@de . . "Angular Momentum of an object rotating about some reference point is the measure of the extent to which the object will continue to rotate about that point unless acted upon by an external torque. In particular, if a point mass rotates about an axis, then the angular momentum with respect to a point on the axis is related to the mass of the object, the velocity and the distance of the mass to the axis. While the motion associated with linear momentum has no absolute frame of reference, the rotation associated with angular momentum is sometimes spoken of as being measured relative to the fixed stars. \\textit{Angular Momentum}, \\textit{Moment of Momentum}, or \\textit{Rotational Momentum\", is a vector quantity that represents the product of a body's rotational inertia and rotational velocity about a particular axis."^^ . . . . . . . "http://dbpedia.org/resource/Angular_momentum"^^ . . . "http://en.wikipedia.org/wiki/Angular_momentum"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$L = I\\omega$, where $I$ is the moment of inertia, and $\\omega$ is the angular velocity."^^ . "Angular Momentum of an object rotating about some reference point is the measure of the extent to which the object will continue to rotate about that point unless acted upon by an external torque. In particular, if a point mass rotates about an axis, then the angular momentum with respect to a point on the axis is related to the mass of the object, the velocity and the distance of the mass to the axis. While the motion associated with linear momentum has no absolute frame of reference, the rotation associated with angular momentum is sometimes spoken of as being measured relative to the fixed stars. \\textit{Angular Momentum}, \\textit{Moment of Momentum}, or \\textit{Rotational Momentum\", is a vector quantity that represents the product of a body's rotational inertia and rotational velocity about a particular axis." . "L" . . "Angular Momentum"@en . . . . . "Angular Momentum per Angle"@en . . "\"Angular Reciprocal Lattice Vector\" is a vector whose scalar products with all fundamental lattice vectors are integral multiples of $2\\pi$."^^ . . . . . . . . "http://www.matter.org.uk/diffraction/geometry/lattice_vectors.htm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "G" . . "Angular Reciprocal Lattice Vector"@en . . "Angular Velocity refers to how fast an object rotates or revolves relative to another point."^^ . . . . . . . . . . . "http://dbpedia.org/resource/Angular_velocity"^^ . . "0112/2///62720#UAD009" . "https://en.wikipedia.org/wiki/Angular_velocity"^^ . "The change of angle per unit time; specifically, in celestial mechanics, the change in angle of the radius vector per unit time." . . . . . "A\u00E7\u0131sal h\u0131z"@tr . "Halaju bersudut"@ms . "Pr\u0119dko\u015B\u0107 k\u0105towa"@pl . "Vitez\u0103 unghiular\u0103"@ro . "Winkelgeschwindigkeit"@de . "angular velocity"@en . "kotna hitrost"@sl . "velocidad angular"@es . "velocidade angular"@pt . "velocit\u00E0 angolare"@it . "vitesse angulaire"@fr . "\u00DAhlov\u00E1 rychlost"@cs . "\u0423\u0433\u043B\u043E\u0432\u0430\u044F \u0441\u043A\u043E\u0440\u043E\u0441\u0442\u044C"@ru . "\u0633\u0631\u0639\u0629 \u0632\u0627\u0648\u064A\u0629"@ar . "\u0633\u0631\u0639\u062A \u0632\u0627\u0648\u06CC\u0647\u200C\u0627\u06CC"@fa . "\u0915\u094B\u0923\u0940\u092F \u0935\u0947\u0917"@hi . "\u89D2\u901F\u5EA6"@ja . "\u89D2\u901F\u5EA6"@zh . "angular speed"@en . "kelajuan bersudut"@ms . . "\"wavenumber\" is the spatial frequency of a wave - the number of waves that exist over a specified distance. More formally, it is the reciprocal of the wavelength. It is also the magnitude of the wave vector."^^ . . . . "http://en.wikipedia.org/wiki/Wavenumber"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$k = \\frac{2\\pi}{\\lambda}= \\frac{2\\pi\\upsilon}{\\upsilon_p}=\\frac{\\omega}{\\upsilon_p}$, where $\\upsilon$ is the frequency of the wave, $\\lambda$ is the wavelength, $\\omega = 2\\pi \\upsilon$ is the angular frequency of the wave, and $\\upsilon_p$ is the phase velocity of the wave.\n\nAlternatively:\n\n$k = \\frac{p}{\\hbar}$, where $p$ is the linear momentum of quasi free electrons in an electron gas and $\\hbar$ is the reduced Planck constant ($h$ divided by $2\\pi$); for phonons, its magnitude is $k = \\frac{2\\pi}{\\lambda}$, where $\\lambda$ is the wavelength of the lattice vibrations."^^ . "\"wavenumber\" is the spatial frequency of a wave - the number of waves that exist over a specified distance. More formally, it is the reciprocal of the wavelength. It is also the magnitude of the wave vector." . "k" . "belongs to SOQ-ISO" . . "Kreisrepetenz"@de . "angular wavenumber"@en . "liczba falowa k\u0105towa"@pl . "nombre d'onde angulaire"@fr . "numero d'onda angolare"@it . "n\u00FAmero de onda angular"@es . "n\u00FAmero de onda angular"@pt . "\u0639\u062F\u062F \u0645\u0648\u062C\u0649 \u0632\u0627\u0648\u0649"@ar . "\u89D2\u6CE2\u6570"@ja . "\u89D2\u6CE2\u6570"@zh . "Kreiswellenzahl"@de . "angular repetency"@en . "repetencja k\u0105towa"@pl . "repet\u00EAncia angular"@pt . "r\u00E9p\u00E9tence angulaire"@fr . "\u062A\u0643\u0631\u0627\u0631 \u0632\u0627\u0648\u0649"@ar . . . "Apogee radius of an elliptical orbit"^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Apogee radius of an elliptical orbit" . "r_2" . . "Apogee Radius"@en . . . "\"Apparent Power\" is the product of the rms voltage $U$ between the terminals of a two-terminal element or two-terminal circuit and the rms electric current I in the element or circuit. Under sinusoidal conditions, the apparent power is the modulus of the complex power."^^ . . . . . . . . . . . . . "0112/2///62720#UAD011" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-41"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\left | \\underline{S} \\right | = UI$, where $U$ is rms value of voltage and $I$ is rms value of electric current."^^ . "$\\left | \\underline{S} \\right |$"^^ . . "Scheinleistung"@de . "apparent power"@en . "moc pozorna"@pl . "potencia aparente"@es . "potenza apparente"@it . "pot\u00EAncia aparente"@pt . "puissance apparente"@fr . "\u0627\u0644\u0642\u062F\u0631\u0629 \u0627\u0644\u0638\u0627\u0647\u0631\u064A\u0629"@ar . "\u76AE\u76F8\u96FB\u529B"@ja . "\u89C6\u5728\u529F\u7387"@zh . . . "\u8868\u89C2\u529F\u7387"@zh . . . "Area is a quantity expressing the two-dimensional size of a defined part of a surface, typically a region bounded by a closed curve."^^ . . . . . . . . . . . . . . . . . . . . . "cm^2" . "$m^2$"^^ . "http://dbpedia.org/resource/Area"^^ . . "0112/2///62720#UAD182" . "Area is a quantity expressing the two-dimensional size of a defined part of a surface, typically a region bounded by a closed curve." . . . "Fl\u00E4che"@de . "Keluasan"@ms . "aire"@fr . "alan"@tr . "area"@en . "area"@it . "arie"@ro . "plocha"@cs . "pole powierzchni"@pl . "povr\u0161ina"@sl . "\u00E1rea"@es . "\u00E1rea"@pt . "\u03A4\u03B1\u03C7\u03CD\u03C4\u03B7\u03C4\u03B1"@el . "\u041F\u043B\u043E\u0449"@bg . "\u041F\u043B\u043E\u0449\u0430\u0434\u044C"@ru . "\u05E9\u05D8\u05D7"@he . "\u0645\u0633\u0627\u062D\u0629"@ar . "\u0645\u0633\u0627\u062D\u062A"@fa . "\u0915\u094D\u0937\u0947\u0924\u094D\u0930\u092B\u0932"@hi . "\u9762\u79EF"@zh . "\u9762\u7A4D"@ja . "superficie"@fr . . . . . "Area Angle"@en . . . . . . . . . . "0112/2///62720#UAD012" . . "areic bit density" . . . "0112/2///62720#UAD013" . . "areic charge density" . . . "0112/2///62720#UAD014" . . "areic mass" . . . . "https://www.easysteel.co.nz/web/assets/EasysteelSurfaceAreaofSections-Feb14.pdf"^^ . "Measure used to indicate the surface area of structural steel per unit length of the steel part." . . . . "Fl\u00E4che pro L\u00E4ngeneinheit"@de . "area per length"@en . . . . . "The ratio of an area and the power required for maintaining room temperature at a given level" . . "Fl\u00E4che pro Heizlast"@de . "area per heating load"@en . . . . . . . . . "$ft^2/s$"^^ . "$m^2/s$"^^ . "$L^2/T$"^^ . . . "Area per Time"@en . . . . . . . . "Area Ratio"@en . . . . . . . "Area Temperature"@en . . "When the temperature of a substance changes, the energy that is stored in the intermolecular bonds between atoms changes. When the stored energy increases, so does the length of the molecular bonds. As a result, solids typically expand in response to heating and contract on cooling; this dimensional response to temperature change is expressed by its coefficient of thermal expansion."^^ . . . "http://en.wikipedia.org/area_thermal_expansion"^^ . "When the temperature of a substance changes, the energy that is stored in the intermolecular bonds between atoms changes. When the stored energy increases, so does the length of the molecular bonds. As a result, solids typically expand in response to heating and contract on cooling; this dimensional response to temperature change is expressed by its coefficient of thermal expansion." . . "Area Thermal Expansion"@en . . . . . . . . "Area Time"@en . . . . . . "Area Time Temperature"@en . . "charge Q presented on an area of size A divided by the area A or vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant (permittivity) \u03B5\u2080"@en . . "auf einer Fl\u00E4che mit dem Fl\u00E4cheninhalt A vorhandenen Ladung Q dividiert durch den Fl\u00E4cheninhalt A oder vektorielle Gr\u00F6\u00DFe, die f\u00FCr einen gegebenen Punkt gleich der Summe der elektrischen Polarisation P und des Produkts aus der elektrischen Feldst\u00E4rke E und der elektrischen Feldkonstante (Permittivit\u00E4t) \u03B5\u2080 ist oder r\u00E4umliche Dichte des elektrischen Moments molekularer Dipole"@de . "0173-1#Z4-BAJ320#002" . . "areic charge density or electric flux density or electric polarization"@en-US . . "volume of data, which is usually dependent on the respective complexity of the information or its coding procedure, divided by the related area"@en . . "Anzahl von Daten, die in der Regel abh\u00E4ngig von der jeweiligen Komplexit\u00E4t der Information oder deren Codierungsverfahren ist, dividiert durch die zugeh\u00F6rige Fl\u00E4che"@de . "0173-1#Z4-BAJ321#002" . . "areic data volume"@en-US . . "energy in a defined direction of propagation through a surface perpendicular to this, divided by its area"@en . . "Leistung in festgelegter Ausbreitungsrichtung durch ein dazu senkrechtes Oberfl\u00E4chenelement, dividiert durch dessen Fl\u00E4che"@de . "0173-1#Z4-BAJ322#002" . . "areic energy flow"@en-US . . "Density of heat flow rate."^^ . "heat-flow-rate" . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Rate_of_heat_flow"^^ . "$\\varphi = \\frac{\\Phi}{A}$, where $\\Phi$ is heat flow rate and $A$ is area."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "Density of heat flow rate." . "\u03C6" . . "Aeric Heat Flow Rate"@en . . . . "mass divided by the related area"@en . . "Masse dividiert durch die zugeh\u00F6rige Fl\u00E4che"@de . "0173-1#Z4-BAJ288#004" . . "areic mass"@en-US . . "ratio of a torque acting on a surface and causing a rotation or shearing divided by this area"@en . . "Quotient aus dem auf eine Fl\u00E4che wirkenden, eine Verdrehung bzw. Abscherung verursachenden Drehmoment dividiert durch diese Fl\u00E4che"@de . "0173-1#Z4-BAJ420#001" . . "areic torque"@en-US . . "An Asset is an economic resource owned by a business or company. Simply stated, assets are things of value that can be readily converted into cash (although cash itself is also considered an asset)."^^ . . "An Asset is an economic resource owned by a business or company. Simply stated, assets are things of value that can be readily converted into cash (although cash itself is also considered an asset)." . . "Asset"@en . . "A second order reaction rate constant that is a specific second order reaction rate constant that governs the kinetics of an atmospheric, gas-phase reaction between hydroxyl radicals and an organic chemical."^^ . . . . . "A second order reaction rate constant that is a specific second order reaction rate constant that governs the kinetics of an atmospheric, gas-phase reaction between hydroxyl radicals and an organic chemical." . . "Atmospheric Hydroxylation Rate"@en . . . "The pressure exerted by the weight of the air above it at any point on the earth's surface. At sea level the atmosphere will support a column of mercury about $760 mm$ high. This decreases with increasing altitude. The standard value for the atmospheric pressure at sea level in SI units is $101,325 pascals$."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Atmospheric_pressure"^^ . . "http://www.oxfordreference.com/views/ENTRY.html?subview=Main&entry=t83.e178"^^ . . "Atmospheric Pressure"@en . . . "\"Atom Scattering Factor\" is measure of the scattering power of an isolated atom."^^ . . . "http://reference.iucr.org/dictionary/Atomic_scattering_factor"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$f = \\frac{E_a}{E_e}$, where $E_a$ is the radiation amplitude scattered by the atom and $E_e$ is the radiation ampliture scattered by a single electron."^^ . "\"Atom Scattering Factor\" is measure of the scattering power of an isolated atom." . "f" . . "Atom Scattering Factor"@en . . "\"Atomic Attenuation Coefficient\" is a measurement of how strongly a chemical species or substance absorbs or scatters light at a given wavelength, per the number of atoms in the substance."^^ . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Attenuation_coefficient"^^ . "$\\mu_a = -\\frac{\\mu}{n}$, where $\\mu$ is the linear attenuation coefficient and $n$ is the number density of the atoms in the substance."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Atomic Attenuation Coefficient\" is a measurement of how strongly a chemical species or substance absorbs or scatters light at a given wavelength, per the number of atoms in the substance." . "\u03BC\u2090" . . "Atomic Attenuation Coefficient"@en . . . . "The electric charge of an ion, equal to the number of electrons the atom has gained or lost in its ionization multiplied by the charge on one electron."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.answers.com/topic/atomic-charge"^^ . "The electric charge of an ion, equal to the number of electrons the atom has gained or lost in its ionization multiplied by the charge on one electron." . . "Atomic Charge"@en . . . "scalar quantity of elementary particles which is retained within a system following any change and, as saved energy, constitutes the capability of a physical system to carry out work"@en . . "skalare Gr\u00F6\u00DFe von Elementarteilchen, die bei beliebiger Umwandlung innerhalb eines Systems erhalten bleibt und als gespeichertes Arbeitsverm\u00F6gen die F\u00E4higkeit eines physikalischen Systems darstellt, Arbeit zu verrichten"@de . "0173-1#Z4-BAJ291#002" . . "atomic energy"@en-US . . "The \"Atomic Mass\" is the mass of a specific isotope, most often expressed in unified atomic mass units."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Atomic_mass"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Atomic Mass\" is the mass of a specific isotope, most often expressed in unified atomic mass units." . "m_a" . . "Atomic Mass"@en . . . "The \"Atomic Number\", also known as the proton number, is the number of protons found in the nucleus of an atom and therefore identical to the charge number of the nucleus. A nuclide is a species of atom with specified numbers of protons and neutrons. Nuclides with the same value of Z but different values of N are called isotopes of an element. The ordinal number of an element in the periodic table is equal to the atomic number. The atomic number equals the charge of the nucleus in units of the elementary charge."^^ . . . "http://en.wikipedia.org/wiki/Atomic_number"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31895"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "The \"Atomic Number\", also known as the proton number, is the number of protons found in the nucleus of an atom and therefore identical to the charge number of the nucleus. A nuclide is a species of atom with specified numbers of protons and neutrons. Nuclides with the same value of Z but different values of N are called isotopes of an element. The ordinal number of an element in the periodic table is equal to the atomic number. The atomic number equals the charge of the nucleus in units of the elementary charge." . "Z" . . "Atomic Number"@en . . . "ratio of the linear stopping power to the number density of the atoms in the medium"@en . . "Quotient aus dem linearen Bremsverm\u00F6gen und der Anzahldichte der Atome in dem Medium"@de . "0173-1#Z4-BAJ292#002" . . "atomic stopping power"@en-US . . "The attenuation coefficient is a quantity that characterizes how easily a material or medium can be penetrated by a beam of light, sound, particles, or other energy or matter. A large attenuation coefficient means that the beam is quickly \"attenuated\" (weakened) as it passes through the medium, and a small attenuation coefficient means that the medium is relatively transparent to the beam. The Attenuation Coefficient is also called linear attenuation coefficient, narrow beam attenuation coefficient, or absorption coefficient."^^ . . . . . . . . . "http://en.wikipedia.org/wiki/Attenuation_coefficient"^^ . "$F(x) = Ae^{-\\alpha x} \\cos{[\\beta (x - x_0)]}$, then $\\alpha$ is the attenuation coefficient and $\\beta$ is the phase coefficient."^^ . "$\\alpha$"^^ . "The attenuation coefficient is a quantity that characterizes how easily a material or medium can be penetrated by a beam of light, sound, particles, or other energy or matter. A large attenuation coefficient means that the beam is quickly \"attenuated\" (weakened) as it passes through the medium, and a small attenuation coefficient means that the medium is relatively transparent to the beam. The Attenuation Coefficient is also called linear attenuation coefficient, narrow beam attenuation coefficient, or absorption coefficient." . "belongs to SOQ-ISO" . . "Attenuation Coefficient"@en . . "\"Auditory Thresholds\" is the thresholds of sensitivity to auditory signals and other input to the ear or the sense of hearing."^^ . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\overline{T_a}$"^^ . "\"Auditory Thresholds\" is the thresholds of sensitivity to auditory signals and other input to the ear or the sense of hearing." . . "Auditory Thresholds"@en . . . "Magnetic Fields surround magnetic materials and electric currents and are detected by the force they exert on other magnetic materials and moving electric charges. The electric and magnetic fields are two interrelated aspects of a single object, called the electromagnetic field. A pure electric field in one reference frame is observed as a combination of both an electric field and a magnetic field in a moving reference frame. The Auxillary Magnetic Field, H characterizes how the true Magnetic Field B influences the organization of magnetic dipoles in a given medium."^^ . . . . . . . . . . . "H"^^ . "Magnetic Fields surround magnetic materials and electric currents and are detected by the force they exert on other magnetic materials and moving electric charges. The electric and magnetic fields are two interrelated aspects of a single object, called the electromagnetic field. A pure electric field in one reference frame is observed as a combination of both an electric field and a magnetic field in a moving reference frame. The Auxillary Magnetic Field, H characterizes how the true Magnetic Field B influences the organization of magnetic dipoles in a given medium." . . "Auxillary Magnetic Field"@en . . . "\"Average Energy Loss per Elementary Charge Produced\" is also referred to as average energy loss per ion pair formed."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "$W_i = \\frac{E_k}{N_i}$, where $E_k$ is the initial kinetic energy of an ionizing charged particle and $N_i$ is the total ionization produced by that particle."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Average Energy Loss per Elementary Charge Produced\" is also referred to as average energy loss per ion pair formed." . "W_i" . . "Average Energy Loss per Elementary Charge Produced"@en . . . "AHEP" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Average Head End Pressure"@en . . . "\"Average Logarithmic Energy Decrement\" is a measure of the amount of energy a neutron loses upon colliding with various nuclei. It is the average value of the increase in lethargy in elastic collisions between neutrons and nuclei whose kinetic energy is negligible compared with that of the neutrons."^^ . . . "http://everything2.com/title/Average+logarithmic+energy+decrement+per+collision"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\xi$"^^ . "\"Average Logarithmic Energy Decrement\" is a measure of the amount of energy a neutron loses upon colliding with various nuclei. It is the average value of the increase in lethargy in elastic collisions between neutrons and nuclei whose kinetic energy is negligible compared with that of the neutrons." . . "Average Logarithmic Energy Decrement"@en . . . "Avg Specific Impulse (lbf-sec/lbm) " . . "Average Specific Impulse"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Average Vacuum Thrust"@en . "AVT" . . . . "0112/2///62720#UAD016" . . "bandwidth distance product" . . "parameter of transmission media for determination of frequency and length restrictions as reciprocal value of the multimode distortion corresponding to the product of maximum pulse frequency and maximum transmission distance"@en . . "Parameter von \u00DCbertragungsmedien zur Bestimmung der Frequenz- und L\u00E4ngenrestriktionen als reziproke Wert der Modendispersion entsprechend dem Produkt aus maximaler Impulsfrequenz mal maximaler \u00DCbertragungsstrecke"@de . "0173-1#Z4-BAJ293#003" . . "bandwidth length product"@en-US . . "Chemicals or substances having a pH higher than 7 are said to be basic; higher pH means higher basicity."^^ . . . "https://en.wikipedia.org/wiki/Base_(chemistry)"^^ . "https://en.wikipedia.org/wiki/PH"^^ . "Chemicals or substances having a pH higher than 7 are said to be basic; higher pH means higher basicity." . . "Acidity"@en . . . "quantity of electricity or electrical charge which a fully charged battery can supply under specified conditions as a product of discharge current and discharge time"@en . . . "0112/2///62720#UAD017" . "Elektrizit\u00E4tsmenge oder elektrische Ladung, die eine vollgeladenen Batterie unter festgelegten Bedingungen abgeben kann als Produkt aus Entladestrom und Entladezeit"@de . "0173-1#Z4-BAJ270#003" . . "battery capacity" . "battery capacity"@en-US . . "A bending moment exists in a structural element when a moment is applied to the element so that the element bends. It is the component of moment of force perpendicular to the longitudinal axis of a beam or a shaft."^^ . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Torque"^^ . . "http://en.wikipedia.org/wiki/Bending_moment"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$M_b = M \\cdot e_Q$, where $M$ is the momentof force and $e_Q$ is a unit vector directed along a $Q-axis$ with respect to which the torque is considered."^^ . "A bending moment exists in a structural element when a moment is applied to the element so that the element bends. It is the component of moment of force perpendicular to the longitudinal axis of a beam or a shaft." . "M_b" . . "Bending Moment of Force"@en . . . "\"Beta Disintegration Energy\" is the energy released by a beta particle radioactive decay. It is the sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in the reference frame in which the emitting nucleus is at rest before its disintegration."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Decay_energy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Beta Disintegration Energy\" is the energy released by a beta particle radioactive decay. It is the sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in the reference frame in which the emitting nucleus is at rest before its disintegration." . "Q\u1D66" . . "Beta Disintegration Energy"@en . . . "Pitch angle in bevel gears is the angle between an element of a pitch cone and its axis. In external and internal bevel gears, the pitch angles are respectively less than and greater than 90 degrees."^^ . . . . . . . . . . . . . . "$\\theta$"^^ . "Pitch angle in bevel gears is the angle between an element of a pitch cone and its axis. In external and internal bevel gears, the pitch angles are respectively less than and greater than 90 degrees." . . "Bevel Gear Pitch Angle"@en . . . "The \"Binding Fraction\" is the ratio of the binding energy of a nucleus to the atomic mass number."^^ . . . "http://encyclopedia2.thefreedictionary.com/binding+fraction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$b = \\frac{B_r}{A}$, where $B_r$ is the relative mass defect and $A$ is the nucleon number."^^ . "The \"Binding Fraction\" is the ratio of the binding energy of a nucleus to the atomic mass number." . "b" . . "Binding Fraction"@en . . "The bioconcentration factor is the ratio of the concentration of a chemical substance in biota over the concentration of the same chemical substance in water. It is related to the octanol-water partition coefficient."^^ . . . "The bioconcentration factor is the ratio of the concentration of a chemical substance in biota over the concentration of the same chemical substance in water. It is related to the octanol-water partition coefficient." . . "Bioconcentration Factor"@en . . . "A time that quantifies how long it takes to reduce a substance's concentration by 50% from any concentration point in time in a water or soil environment by either bacteria or another living organism."^^ . . . "A time that quantifies how long it takes to reduce a substance's concentration by 50% from any concentration point in time in a water or soil environment by either bacteria or another living organism." . . "Biodegredation Half Life"@en . . . "name for a particular quantity of data on the basis of the binary digit \"Bit\" (basic indissoluble information unit) which can only assume a state of 1 or 0"@en . . "Bezeichnung f\u00FCr eine bestimmte Anzahl von Daten auf Basis der Bin\u00E4rziffer Bit (en: Basic Indissoluble Information Unit, dt: kleinstm\u00F6gliche Informationseinheit), welche nur den Zustand 1 oder 0 annehmen kann"@de . "0173-1#Z4-BAJ436#002" . . "bit data volume"@en-US . . . . "0112/2///62720#UAD018" . . "bit rate" . . "speed with which one bit will be transmitted per second"@en . . "Geschwindigkeit, mit der Bin\u00E4rzeichen \u00FCbertragen werden"@de . "0173-1#Z4-BAJ295#003" . . "bit transmission rate"@en-US . . "The blood sugar level, blood sugar concentration, or blood glucose level is the amount of glucose present in the blood of humans and other animals. Glucose is a simple sugar and approximately 4 grams of glucose are present in the blood of humans at all times. The body tightly regulates blood glucose levels as a part of metabolic homeostasis. Glucose is stored in skeletal muscle and liver cells in the form of glycogen;[2] in fasted individuals, blood glucose is maintained at a constant level at the expense of glycogen stores in the liver and skeletal muscle. [Wikipedia] $\\\\$ There are two main methods of describing concentrations: by weight, and by molecular count. Weights are in grams, molecular counts in moles. A mole is $6.022\\times 10^{23}$ molecules.) In both cases, the unit is usually modified by $milli-$ or $micro-$ or other prefix, and is always $per$ some volume, often a liter. Conversion factors depend on the molecular weight of the substance in question. $\\\\$ $mmol/L$ is millimoles/liter, and is the world standard unit for measuring glucose in blood. Specifically, it is the designated SI (Systeme International) unit. 'World standard' is not universal; not only the US but a number of other countries use mg/dl. A mole is about $6\\times 10^{23}$ molecules. $\\\\$ $mg/dL$ (milligrams/deciliter) is the traditional unit for measuring bG (blood glucose). There is a trend toward using $mmol/L$ however mg/dL is much in practice. Some use is made of $mmol/L$ as the primary unit with $mg/dL$ quoted in parentheses. This acknowledges the large base of health care providers, researchers and patients who are already familiar with $mg/dL|)."^^ . . . "http://www.faqs.org/faqs/diabetes/faq/part1/section-9.html"^^ . "citation: https://en.wikipedia.org/wiki/Blood_sugar_level" . . "Blood Glucose Level"@en . . . "The blood sugar level, blood sugar concentration, or blood glucose level is the amount of glucose present in the blood of humans and other animals. Glucose is a simple sugar and approximately 4 grams of glucose are present in the blood of humans at all times. The body tightly regulates blood glucose levels as a part of metabolic homeostasis. Glucose is stored in skeletal muscle and liver cells in the form of glycogen;[2] in fasted individuals, blood glucose is maintained at a constant level at the expense of glycogen stores in the liver and skeletal muscle. [Wikipedia] $\\\\$ There are two main methods of describing concentrations: by weight, and by molecular count. Weights are in grams, molecular counts in moles. A mole is $6.022\\times 10^{23}$ molecules.) In both cases, the unit is usually modified by $milli-$ or $micro-$ or other prefix, and is always $per$ some volume, often a liter. Conversion factors depend on the molecular weight of the substance in question. $\\\\$ $mmol/L$ is millimoles/liter, and is the world standard unit for measuring glucose in blood. Specifically, it is the designated SI (Systeme International) unit. 'World standard' is not universal; not only the US but a number of other countries use mg/dl. A mole is about $6\\times 10^{23}$ molecules. $\\\\$ $mg/dL$ (milligrams/deciliter) is the traditional unit for measuring bG (blood glucose). There is a trend toward using $mmol/L$ however mg/dL is much in practice. Some use is made of $mmol/L$ as the primary unit with $mg/dL$ quoted in parentheses. This acknowledges the large base of health care providers, researchers and patients who are already familiar with $mg/dL|)."^^ . . . "http://www.faqs.org/faqs/diabetes/faq/part1/section-9.html"^^ . "citation: https://en.wikipedia.org/wiki/Blood_sugar_level" . . "Blood Glucose Level by Mass"@en . . . "$\\textit{Body Mass Index}$, BMI, is an index of weight for height, calculated as: $BMI = \\frac{M_{body}}{H^2}$, where $M_{body}$ is body mass in kg, and $H$ is height in metres. The BMI has been used as a guideline for defining whether a person is overweight because it minimizes the effect of height, but it does not take into consideration other important factors, such as age and body build. The BMI has also been used as an indicator of obesity on the assumption that the higher the index, the greater the level of body fat."^^ . . . . . . "http://www.oxfordreference.com/view/10.1093/acref/9780198631477.001.0001/acref-9780198631477-e-254"^^ . "BMI" . . "Body Mass Index"@en . "BMI" . . "A temperature that is the one at which a substance will change its physical state from a liquid to a gas. It is also the temperature where the liquid and gaseous forms of a pure substance can exist in equilibrium."^^ . . . . . . . . "A temperature that is the one at which a substance will change its physical state from a liquid to a gas. It is also the temperature where the liquid and gaseous forms of a pure substance can exist in equilibrium." . . "Boiling Point Temperature"@en . . . "\"Bragg Angle\" describes the condition for a plane wave to be diffracted from a family of lattice planes, the angle between the wavevector of the incident plane wave, and the lattice planes."^^ . . . . . . . . . . . . . . "http://reference.iucr.org/dictionary/Bragg_angle"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$2d\\sin{\\vartheta} = n\\lambda $"^^ . "$\\vartheta$"^^ . "\"Bragg Angle\" describes the condition for a plane wave to be diffracted from a family of lattice planes, the angle between the wavevector of the incident plane wave, and the lattice planes." . . "Bragg Angle"@en . . . "\"Breadth\" is the extent or measure of how broad or wide something is."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Length"^^ . . "http://en.wiktionary.org/wiki/breadth"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Breadth\" is the extent or measure of how broad or wide something is." . "b" . . "Breite"@de . "ancho"@es . "breadth"@en . "geni\u015Fli\u011Fi"@tr . "largeur"@fr . "larghezza"@it . "largura"@pt . "lebar"@ms . "szeroko\u015B\u0107"@pl . "\u0161irina"@sl . "\u0161\u00ED\u0159ka"@cs . "\u0448\u0438\u0440\u0438\u043D\u0430"@ru . "\u0627\u0644\u0639\u0631\u0636"@ar . "\u0639\u0631\u0636"@fa . "\u5BEC\u5EA6"@zh . "\u5E45"@ja . . . . . . . . . . . . . . . "B" . . "Buckling Factor"@en . . . "The bulk modulus of a substance measures the substance's resistance to uniform compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume."^^ . . . . "http://en.wikipedia.org/wiki/Bulk_modulus"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$K = \\frac{p}{\\vartheta}$, where $p$ is pressure and $\\vartheta$ is volume strain."^^ . "The bulk modulus of a substance measures the substance's resistance to uniform compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume." . "K" . . "Bulk Modulus"@en . . "\"Burgers Vector\" is the vector characterizing a dislocation, i.e. the closing vector in a Burgers circuit encircling a dislocation line."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Burgers_vector"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Burgers Vector\" is the vector characterizing a dislocation, i.e. the closing vector in a Burgers circuit encircling a dislocation line." . "b" . . "Burgers Vector"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Burn Rate"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "t" . . "Burn Time"@en . . . "bursting pressure divided by areic mass"@en . . . "0112/2///62720#UAD019" . "Quotient Berstdruck dividiert durch die fl\u00E4chenbezogene Masse"@de . "0173-1#Z4-BAJ434#001" . . "burst factor" . "burst factor"@en-US . . "particular quantity of data based on a string consisting of 8 bits"@en . . "Anzahl von Daten auf Basis einer Zeichenfolge, die aus je 8 Bit besteht"@de . "0173-1#Z4-BAJ435#004" . . "byte data volume"@en-US . . . . . . "0112/2///62720#UAD020" . . "byte rate" . . "speed with which 8 bits are transmitted"@en . . "Geschwindigkeit, mit der 8 Bin\u00E4rzeichen \u00FCbertragen werden"@de . "0173-1#Z4-BAJ297#003" . . "byte transmission rate"@en-US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.grc.nasa.gov/WWW/k-12/airplane/cg.html"^^ . "cg" . . "Center of Gravity in the X axis"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.grc.nasa.gov/WWW/k-12/airplane/cg.html"^^ . "cg" . . "Center of Gravity in the Y axis"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.grc.nasa.gov/WWW/k-12/airplane/cg.html"^^ . "cg" . . "Center of Gravity in the Z axis"@en . . . "The point at which the distributed mass of a composite body can be acted upon by a force without inducing any rotation of the composite body."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Center_of_mass"^^ . "The point at which the distributed mass of a composite body can be acted upon by a force without inducing any rotation of the composite body." . "R" . . "Center of Mass (CoM)"@en . "COM" . . . "Contractual mass requirement of a delivered item. Note that The term 'control mass' is sometimes utilized as a limit in lieu of CEI mass when a CEI mass does not exist. The term 'Interface Control Document Mass' is another alternative for specifying a contractual mass requirement."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Contractual mass requirement of a delivered item. Note that The term 'control mass' is sometimes utilized as a limit in lieu of CEI mass when a CEI mass does not exist. The term 'Interface Control Document Mass' is another alternative for specifying a contractual mass requirement." . . "Contract End Item (CEI) Specification Mass."@en . "CEI" . . . "The upper design gross mass limit of a system at a specified mission event against which margins are calculated after accounting for basic masses of flight hardware, MGA, and uncertainties. It may include propellants, crew, and cargo."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "The upper design gross mass limit of a system at a specified mission event against which margins are calculated after accounting for basic masses of flight hardware, MGA, and uncertainties. It may include propellants, crew, and cargo." . . "Control Mass."@en . . . "A \"Canonical Partition Function\" applies to a canonical ensemble, in which the system is allowed to exchange heat with the environment at fixed temperature, volume, and number of particles."^^ . . . "http://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$Z = \\sum_r e^{-\\frac{E_r}{kT}}$, where the sum is over all quantum states consistent with given energy, volume, external fields, and content, $E_r$ is the energy in the $rth$ quantum state, $k$ is the Boltzmann constant, and $T$ is thermodynamic temperature."^^ . "A \"Canonical Partition Function\" applies to a canonical ensemble, in which the system is allowed to exchange heat with the environment at fixed temperature, volume, and number of particles." . "Z" . . "Canonical Partition Function"@en . . "\"Capacitance\" is the ability of a body to hold an electrical charge; it is quantified as the amount of electric charge stored for a given electric potential. Capacitance is a scalar-valued quantity."^^ . . . . . . . . . . . "http://dbpedia.org/resource/Capacitance"^^ . . "0112/2///62720#UAD021" . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$C = Q/U$, where $Q$ is electric charge and $V$ is voltage."^^ . "\"Capacitance\" is the ability of a body to hold an electrical charge; it is quantified as the amount of electric charge stored for a given electric potential. Capacitance is a scalar-valued quantity." . . "C" . . "Capacitance"@en . . "In computer operations, (a) the largest quantity which can be stored, processed, or transferred; (b) the largest number of digits or characters which may regularly be processed; (c) the upper and lower limits of the quantities which may be processed. In other contexts, the amount of material that can be stored, such as fuel or food."^^ . "http://dbpedia.org/resource/Capacity"^^ . . "In computer operations, (a) the largest quantity which can be stored, processed, or transferred; (b) the largest number of digits or characters which may regularly be processed; (c) the upper and lower limits of the quantities which may be processed. In other contexts, the amount of material that can be stored, such as fuel or food." . "TBD" . . "Capacity"@en . . "\"Carrier LifetIme\" is a time constant for recombination or trapping of minority charge carriers in semiconductors."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Carrier_lifetime"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$\\tau, \\tau_n, \\tau_p$"^^ . "\"Carrier LifetIme\" is a time constant for recombination or trapping of minority charge carriers in semiconductors." . . "Carrier LifetIme"@en . . . "\"Area\" is a quantity that expresses the extent of a two-dimensional surface or shape, or planar lamina, in the plane."^^ . "area" . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Area"^^ . "$A = \\int\\int dxdy$, where $x$ and $y$ are cartesian coordinates."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Area\" is a quantity that expresses the extent of a two-dimensional surface or shape, or planar lamina, in the plane." . "A" . . "Cartesian Area"@en . . . . "\"Cartesian Coordinates\" specify each point uniquely in a plane by a pair of numerical coordinates, which are the signed distances from the point to two fixed perpendicular directed lines, measured in the same unit of length. "^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Cartesian_coordinate_system"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Cartesian Coordinates\" specify each point uniquely in a plane by a pair of numerical coordinates, which are the signed distances from the point to two fixed perpendicular directed lines, measured in the same unit of length. " . "x, y, z" . . "Cartesian coordinates"@en . "Kart\u00E9zsk\u00E1 soustava sou\u0159adnic"@cs . "Koordiant Kartesius"@ms . "coordenadas cartesianas"@pt . "coordinate cartesiane"@it . "coordonn\u00E9es cart\u00E9siennes"@fr . "kartesische Koordinaten"@de . "kartezyen koordinatlar\u0131"@tr . "\u0645\u062E\u062A\u0635\u0627\u062A \u062F\u06A9\u0627\u0631\u062A\u06CC"@fa . "\u76F4\u89D2\u5750\u6807\u7CFB"@zh . "Kart\u00E9zsk\u00E9 sou\u0159adnice"@cs . . . "\"Volume\" is the quantity of three-dimensional space enclosed by some closed boundary, for example, the space that a substance (solid, liquid, gas, or plasma) or shape occupies or contains."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Volume"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$V = \\int\\int\\int dxdydz$, where $x$, $y$, and $z$ are cartesian coordinates."^^ . "\"Volume\" is the quantity of three-dimensional space enclosed by some closed boundary, for example, the space that a substance (solid, liquid, gas, or plasma) or shape occupies or contains." . "V" . . "Isipadu"@ms . "Objem"@cs . "Volumen"@de . "hacim"@tr . "obj\u0119to\u015B\u0107"@pl . "prostornina"@sl . "volum"@ro . "volume"@en . "volume"@fr . "volume"@it . "volume"@pt . "volumen"@es . "\u0395\u03C0\u03B9\u03C4\u03AC\u03C7\u03C5\u03BD\u03C3\u03B7"@el . "\u041E\u0431\u0435\u043C"@bg . "\u041E\u0431\u044A\u0451\u043C"@ru . "\u05E0\u05E4\u05D7"@he . "\u062D\u062C\u0645"@ar . "\u062D\u062C\u0645"@fa . "\u0906\u092F\u0924\u0928"@hi . "\u4F53\u79EF"@zh . "\u4F53\u7A4D"@ja . . . "An index of the actual or potential activity of a catalyst. The catalytic activity of an enzyme or an enzyme-containing preparation is defined as the property measured by the increase in the rate of conversion of a specified chemical reaction that the enzyme produces in a specified assay system. Catalytic activity is an extensive quantity and is a property of the enzyme, not of the reaction mixture; it is thus conceptually different from rate of conversion although measured by and equidimensional with it. The unit for catalytic activity is the \\(katal\\); it may also be expressed in mol \\(s^{-1}\\). Dimensions: \\(N T^{-1}\\). Former terms such as catalytic ability, catalytic amount, and enzymic activity are no er recommended. Derived quantities are molar catalytic activity, specific catalytic activity, and catalytic activity concentration. Source(s): www.answers.com"^^ . . . . . . "http://dbpedia.org/resource/Catalysis"^^ . . "0112/2///62720#UAD022" . "0112/2///62720#UAD367" . . . "Catalytic Activity"@en . . "The catalytic activity of an enzyme per unit volume, where volume refers to that of the original enzyme\u2010containing preparation, not that of the assay system. It may be expressed in katals per litre."^^ . . . . . . . . . . . . . . . . . . . . . "https://doi.org/10.1351/goldbook.C00882"^^ . "The catalytic activity of an enzyme per unit volume, where volume refers to that of the original enzyme\u2010containing preparation, not that of the assay system. It may be expressed in katals per litre." . . . "Catalytic Activity Concentration"@en . . "\"Celsius Temperature\", the thermodynamic temperature T_0, is exactly 0.01 kelvin below the thermodynamic temperature of the triple point of water."^^ . . . . . "0112/2///62720#UAD023" . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "\"Celsius Temperature\", the thermodynamic temperature $T_0$, is exactly $0.01$kelvin below the thermodynamic temperature of the triple point of water.\n$t = T - T_0$, where $T$ is Thermodynamic Temperature and $T_0 = 273.15 K$."^^ . "\"Celsius Temperature\", the thermodynamic temperature T_0, is exactly 0.01 kelvin below the thermodynamic temperature of the triple point of water." . . . "Celsius s\u0131cakl\u0131k"@tr . "Celsius temperature"@en . "Celsius-Temperatur"@de . "Suhu Celsius"@ms . "temperatura Celsius"@es . "temperatura Celsius"@it . "temperatura celsius"@pt . "temperatura"@pl . "temperatura"@sl . "temperatur\u0103 Celsius"@ro . "temp\u00E9rature Celsius"@fr . "teplota"@cs . "\u0422\u0435\u043C\u043F\u0435\u0440\u0430\u0442\u0443\u0440\u0430 \u0426\u0435\u043B\u044C\u0441\u0438\u044F"@ru . "\u05E6\u05DC\u05D6\u05D9\u05D5\u05E1"@he . "\u062F\u0631\u062C\u0629 \u0627\u0644\u062D\u0631\u0627\u0631\u0629 \u0627\u0644\u0645\u0626\u0648\u064A\u0629 \u0623\u0648 \u0627\u0644\u0633\u064A\u0644\u0633\u064A\u0648\u0633"@ar . "\u062F\u0645\u0627\u06CC \u0633\u0644\u0633\u06CC\u0648\u0633/\u0633\u0627\u0646\u062A\u06CC\u06AF\u0631\u0627\u062F"@fa . "\u0938\u0947\u0932\u094D\u0938\u093F\u092F\u0938 \u0924\u093E\u092A\u092E\u093E\u0928"@hi . "\u6E29\u5EA6"@ja . "\u6E29\u5EA6"@zh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.grc.nasa.gov/WWW/k-12/airplane/cg.html"^^ . "cg" . . "Center of Gravity in the X axis"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.grc.nasa.gov/WWW/k-12/airplane/cg.html"^^ . "cg" . . "Center of Gravity in the Y axis"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.grc.nasa.gov/WWW/k-12/airplane/cg.html"^^ . "cg" . . "Center of Gravity in the Z axis"@en . . . "Characteristic impedance at a point in a non-dissipative medium and for a plane progressive wave, the quotient of the sound pressure $p$ by the component of the sound particle velocity $v$ in the direction of the wave propagation."^^ . . . "http://en.wikipedia.org/wiki/Acoustic_impedance#Characteristic_acoustic_impedance"^^ . "$Z_c = pc$, where $p$ is the sound pressure and $c$ is the phase speed of sound."^^ . "Z" . "belongs to SOQ-ISO" . . "Characteristic Acoustic Impedance"@en . . . "quantity of dimension one (as a result of measuring technology theory) which clarifies facts, states or developments and is used as a scale e.g. to represent causes and effects of events"@en . . "Gr\u00F6\u00DFe der Dimension 1 (als Ergebnis der metrisierenden Messtheorie), die Sachverhalte, Zust\u00E4nde oder Entwicklungen verdeutlicht und als Ma\u00DFstab dient, um z. B. Ursache und Wirkung von Vorg\u00E4ngen in kausalem Zusammenhang darzustellen"@de . "0173-1#Z4-BAJ279#002" . . "characteristic number"@en-US . . "Characteristic velocity or $c^{*}$ is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems."^^ . . "$c^{*}$"^^ . . "Characteristic Velocity"@en . . "The \"Charge Number\", or just valance of an ion is the coefficient that, when multiplied by the elementary charge, gives the ion's charge."^^ . . . "http://en.wikipedia.org/wiki/Charge_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "The \"Charge Number\", or just valance of an ion is the coefficient that, when multiplied by the elementary charge, gives the ion's charge." . "z" . . "Charge Number"@en . . . "In chemical physics and physical chemistry, \"Chemical Affinity\" is the electronic property by which dissimilar chemical species are capable of forming chemical compounds. Chemical affinity can also refer to the tendency of an atom or compound to combine by chemical reaction with atoms or compounds of unlike composition."^^ . . . "http://en.wikipedia.org/wiki/Chemical_affinity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$A = -\\sum \\nu_b\\mu_B$, where $\\nu_b$ is the stoichiometric number of substance $B$ and $\\mu_B$ is the chemical potential of substance $B$."^^ . "In chemical physics and physical chemistry, \"Chemical Affinity\" is the electronic property by which dissimilar chemical species are capable of forming chemical compounds. Chemical affinity can also refer to the tendency of an atom or compound to combine by chemical reaction with atoms or compounds of unlike composition." . "A" . . "Chemical Affinity"@en . . . . . . . . . . . . . . "In the context of a chemical durability test, this is measure of how much of a solution (often a corrosive or reactive one) is consumed or used up per unit mass of a material being tested. In other words, this the volume of solution needed to cause a certain level of chemical reaction or damage to a given mass of the material." . . "Chemical Consumption per Mass"@en . . . "\"Chemical Potential\", also known as partial molar free energy, is a form of potential energy that can be absorbed or released during a chemical reaction."^^ . . . . . "http://en.wikipedia.org/wiki/Chemical_potential"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\mu_B = (\\frac{\\partial G}{\\partial n_B})_{T,p,n_i}$, where $G$ is Gibbs energy, and $n_B$ is the amount of substance $B$."^^ . "$\\mu_B$"^^ . "\"Chemical Potential\", also known as partial molar free energy, is a form of potential energy that can be absorbed or released during a chemical reaction." . . "Chemick\u00FD potenci\u00E1l"@cs . "Keupayaan kimia"@ms . "Potencja\u0142 chemiczny"@pl . "Poten\u021Bial chimic"@ro . "chemical potential"@en . "chemisches Potential des Stoffs B"@de . "kimyasal potansiyel"@tr . "potencial qu\u00EDmico"@es . "potencial qu\u00EDmico"@pt . "potential chimique"@fr . "potenziale chimico"@it . "\u0425\u0438\u043C\u0438\u0447\u0435\u0441\u043A\u0438\u0439 \u043F\u043E\u0442\u0435\u043D\u0446\u0438\u0430\u043B"@ru . "\u062C\u0647\u062F \u0643\u064A\u0645\u064A\u0627\u0626\u064A"@ar . "\u067E\u062A\u0627\u0646\u0633\u06CC\u0644 \u0634\u06CC\u0645\u06CC\u0627\u06CC\u06CC"@fa . "\u5316\u5B66\u30DD\u30C6\u30F3\u30B7\u30E3\u30EB"@ja . "\u5316\u5B66\u52BF"@zh . . . "Chromaticity is an objective specification of the quality of a color regardless of its luminance"^^ . . . "https://en.wikipedia.org/wiki/Chromaticity"^^ . "Chromaticity is an objective specification of the quality of a color regardless of its luminance" . . "Chromaticity"@en . . "In fluid dynamics, circulation is the line integral around a closed curve of the fluid velocity. It has dimensions of length squared over time."^^ . . . . . . . . "http://dbpedia.org/resource/Circulation_%28fluid_dynamics%29"^^ . . "$\\Gamma$"^^ . "In fluid dynamics, circulation is the line integral around a closed curve of the fluid velocity. It has dimensions of length squared over time." . . "Circulation"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "r_o" . . "Closest Approach Radius"@en . . . "\"Coefficient of Heat Transfer\", in thermodynamics and in mechanical and chemical engineering, is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient is the proportionality coefficient between the heat flux, that is heat flow per unit area, q/A, and the thermodynamic driving force for the flow of heat (that is, the temperature difference, (Delta T). Areic heat flow rate divided by thermodynamic temperature difference. In building technology, the \"Coefficient of Heat Transfer\", is often called \"thermal transmittance}\" with the symbol \"U\". It has SI units in watts per squared meter kelvin."^^ . . . . . . . . . . . . . . . "$heat-xfer-coeff$"^^ . . "http://en.wikipedia.org/wiki/Heat_transfer_coefficient"^^ . "\"Coefficient of Heat Transfer\", in thermodynamics and in mechanical and chemical engineering, is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient is the proportionality coefficient between the heat flux, that is heat flow per unit area, $q/A$, and the thermodynamic driving force for the flow of heat (that is, the temperature difference, $ \\bigtriangleup T $). Areic heat flow rate divided by thermodynamic temperature difference. In building technology, the $\\textit{Coefficient of Heat Transfer}$, is often called $\\textit{thermal transmittance}$, with the symbol $U$. $\\textit{Coefficient of Heat Transfer}$, has SI units in watts per squared meter kelvin: $W/(m^2 \\cdot K)$ .\n\n$K = \\frac{\\varphi}{T}$, where $\\varphi$ is areic heat flow rate and $T$ is thermodynamic temperature difference."^^ . "$\\kappa$"^^ . "\"Coefficient of Heat Transfer\", in thermodynamics and in mechanical and chemical engineering, is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient is the proportionality coefficient between the heat flux, that is heat flow per unit area, q/A, and the thermodynamic driving force for the flow of heat (that is, the temperature difference, (Delta T). Areic heat flow rate divided by thermodynamic temperature difference. In building technology, the \"Coefficient of Heat Transfer\", is often called \"thermal transmittance}\" with the symbol \"U\". It has SI units in watts per squared meter kelvin." . . "Coefficient of heat transfer"@en . . "$\\textit{Coercivity}$, also referred to as $\\textit{Coercive Field Strength}$, is the magnetic field strength to be applied to bring the magnetic flux density in a substance from its remaining magnetic flux density to zero. This is defined as the coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. The quantity which is brought to zero should be stated, and the appropriate symbol used: $H_{cB}$, $H_{cJ}$ or $H_{cM}$ for the coercivity relating to the magnetic flux density, the magnetic polarization or the magnetization respectively, where $H_{cJ} = H_{cM}$."^^ . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-69"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "H_{c,B}" . . "Coercivity"@en . . . "\"Coherence Length\" characterizes the distance in a superconductor over which the effect of a perturbation is appreciable."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Coherence_length"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Coherence Length\" characterizes the distance in a superconductor over which the effect of a perturbation is appreciable." . "\u03BE" . . "Coherence Length"@en . . . "\"Cold Receptor Threshold\" is the threshold of cold-sensitive free nerve-ending."^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\overline{T_c}$"^^ . "\"Cold Receptor Threshold\" is the threshold of cold-sensitive free nerve-ending." . . "Cold Receptor Threshold"@en . . "\"Combined Non Evaporative Heat Transfer Coefficient\" is the "^^ . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$h = h_r + h_c + h_k$, where $h_r$ is the linear radiative heat transfer coefficient, $h_c$ is the convective heat transfer coefficient, and $h_k$ is the conductive heat transfer coefficient."^^ . "\"Combined Non Evaporative Heat Transfer Coefficient\" is the " . "h" . . "Combined Non Evaporative Heat Transfer Coefficient"@en . . . "T_c" . . "Combustion Chamber Temperature"@en . . . "0112/2///62720#UAD199" . . "real part of complex frequency" . . "\"Complex Power\", under sinusoidal conditions, is the product of the phasor $U$ representing the voltage between the terminals of a linear two-terminal element or two-terminal circuit and the complex conjugate of the phasor $I$ representing the electric current in the element or circuit."^^ . . . . . . . . . . . . "$complex-power$"^^ . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-39"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\underline{S} = \\underline{U}\\underline{I^*}$, where $\\underline{U}$ is voltage phasor and $\\underline{I^*}$ is the complex conjugate of the current phasor."^^ . "$\\underline{S}$"^^ . . "Complex Power"@en . . . . . "Compressibility is a measure of the relative volume change of a fluid or solid as a response to a pressure (or mean stress) change."^^ . . . . . . . . . "0112/2///62720#UAD024" . "http://en.wikipedia.org/wiki/Compressibility"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\chi = -(\\frac{1}{V})\\frac{dV}{d\\rho}$, where $V$ is volume and $p$ is pressure."^^ . "$\\chi$"^^ . "Compressibility is a measure of the relative volume change of a fluid or solid as a response to a pressure (or mean stress) change." . . "Compressibility"@en . . "The compressibility factor ($Z$) is a useful thermodynamic property for modifying the ideal gas law to account for the real gas behaviour. The closer a gas is to a phase change, the larger the deviations from ideal behavior. It is simply defined as the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure. Values for compressibility are calculated using equations of state (EOS), such as the virial equation and van der Waals equation. The compressibility factor for specific gases can be obtained, with out calculation, from compressibility charts. These charts are created by plotting Z as a function of pressure at constant temperature."^^ . . . . . . . . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . . . "Z" . . "Compressibility Factor"@en . . . "In chemistry, concentration is defined as the abundance of a constituent divided by the total volume of a mixture. Furthermore, in chemistry, four types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. The term concentration can be applied to any kind of chemical mixture, but most frequently it refers to solutes in solutions."^^ . "http://dbpedia.org/resource/Concentration"^^ . . "http://en.wikipedia.org/wiki/Concentration"^^ . "In chemistry, concentration is defined as the abundance of a constituent divided by the total volume of a mixture. Furthermore, in chemistry, four types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. The term concentration can be applied to any kind of chemical mixture, but most frequently it refers to solutes in solutions." . . "Concentration"@en . . "$\\textit{Conductance}$, for a resistive two-terminal element or two-terminal circuit with terminals A and B, quotient of the electric current i in the element or circuit by the voltage $u_{AB}$ between the terminals: $G = \\frac{1}{R}$, where the electric current is taken as positive if its direction is from A to B and negative in the opposite case. The conductance of an element or circuit is the inverse of its resistance."^^ . . . . . . . . . . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-06"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$G = Re\\underline{Y}$, where $\\underline{Y}$ is admittance.\n\nAlternatively:\n\n$G = \\frac{1}{R}$, where $R$ is resistance."^^ . "G" . . "Conductance"@en . . . "\"Conduction Speed\" is the speed of impulses in nerve fibers."^^ . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Conduction Speed\" is the speed of impulses in nerve fibers." . "c" . . "Conduction Speed"@en . . . "\"Conductive Heat Transfer Rate\" is proportional to temperature gradient and area of contact."^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\Phi_k$"^^ . "\"Conductive Heat Transfer Rate\" is proportional to temperature gradient and area of contact." . . "Conductive Heat Transfer Rate"@en . . "\"Conductivity\" is a scalar or tensor quantity the product of which by the electric field strength in a medium is equal to the electric current density. For an isotropic medium the conductivity is a scalar quantity; for an anisotropic medium it is a tensor quantity."^^ . . . . . . . . . . . . . . "0112/2///62720#UAD025" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-03"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\mathbf{J} = \\sigma \\mathbf{E}$, where $\\mathbf{J}$ is electric current density, and $\\mathbf{E}$ is electric field strength."^^ . "$\\gamma$"^^ . "$\\sigma$"^^ . "\"Conductivity\" is a scalar or tensor quantity the product of which by the electric field strength in a medium is equal to the electric current density. For an isotropic medium the conductivity is a scalar quantity; for an anisotropic medium it is a tensor quantity." . . "Conductivity"@en . . . . "In optics and lens design, constringence of a transparent material, also known as the Abbe number or the V-number, is an approximate measure of the material's dispersion (change of refractive index versus wavelength), with high values of V indicating low dispersion."^^ . . . "https://en.wikipedia.org/wiki/Abbe_number"^^ . "V" . . "Constringence"@en . "Abbe Number"@en . "V-number"@en . . . "\"Convective Heat Transfer\" is convective heat transfer coefficient multiplied by temperature difference and exchange area. "^^ . . "http://en.wikipedia.org/wiki/Heat_transfer#Convection"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\Phi_c$"^^ . "\"Convective Heat Transfer\" is convective heat transfer coefficient multiplied by temperature difference and exchange area. " . . "Convective Heat Transfer"@en . . "Correlated color temperature (CCT) is a measure of light source color appearance defined by the proximity of the light source's chromaticity coordinates to the blackbody locus, as a single number rather than the two required to specify a chromaticity."^^ . . . "https://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/whatiscct.asp#:~:text=Correlated%20color%20temperature%20(CCT)%20is,required%20to%20specify%20a%20chromaticity."^^ . "Correlated color temperature (CCT) is a measure of light source color appearance defined by the proximity of the light source's chromaticity coordinates to the blackbody locus, as a single number rather than the two required to specify a chromaticity." . . "Correlated Color Temperature"@en-us . "Correlated Colour Temperature"@en . . . . . . "https://www.designingbuildings.co.uk/wiki/Cost_per_m2_of_gross_internal_floor_area"^^ . "In the construction industry, cost per area is the unit rate which, when multiplied by the gross internal floor area (GIFA), gives the total building works estimate (i.e.works cost estimate less main contractor\u2019s preliminaries and main contractor\u2019s overheads and profit)." . . "Kosten pro Fl\u00E4che"@de . "cost per area"@en . . . . . . "https://en.wikipedia.org/wiki/Cost_of_electricity_by_source"^^ . "The monetary cost of a unit of energy" . . "Energiekosten"@de . "energy cost"@en . . . . . "https://en.wikipedia.org/wiki/Photovoltaics"^^ . "In photovoltaics, cost per power of electricity produced measures the cost of installing the hardware relative to the power produced." . . "Anschaffungskosten pro Watt"@de . "cost per power"@en . . "\"Count\" is the value of a count of items."^^ . . . "\"Count\" is the value of a count of items." . . "Count"@en . . . "\"Coupling Factor\" is the ratio of an electromagnetic quantity, usually voltage or current, appearing at a specified location of a given circuit to the corresponding quantity at a specified location in the circuit from which energy is transferred by coupling."^^ . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=161-03-18"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "For inductive coupling between two inductive elements, $k = \\frac{\\left | L_{mn} \\right |}{\\sqrt{L_m L_n}}$, where $L_m$ and $L_n$ are their self inductances, and $L_{mn}$ is their mutual inductance."^^ . "\"Coupling Factor\" is the ratio of an electromagnetic quantity, usually voltage or current, appearing at a specified location of a given circuit to the corresponding quantity at a specified location in the circuit from which energy is transferred by coupling." . "k" . . "Constant\u0103 de cuplaj"@ro . "constante de acoplamiento"@es . "constante de couplage"@fr . "coupling factor"@en . "fattore di accoppiamento"@it . "sta\u0142a sprz\u0119\u017Cenia"@pl . "\u00C7iftlenim sabiti"@tr . "\u041A\u043E\u043D\u0441\u0442\u0430\u043D\u0442\u0430 \u0432\u0437\u0430\u0438\u043C\u043E\u0434\u0435\u0439\u0441\u0442\u0432\u0438\u044F"@ru . "\u7D50\u5408\u5B9A\u6570"@ja . "\u8026\u5408\u5E38\u6578"@zh . . "\"Cross-section\" is used to express the likelihood of interaction between particles. For a specified target particle and for a specified reaction or process produced by incident charged or uncharged particles of specified type and energy, it is the mean number of such reactions or processes divided by the incident-particle fluence."^^ . . . . . . . . . . . . . . . . . . . . . . "0112/2///62720#UAD026" . "http://en.wikipedia.org/wiki/Cross_section_(physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Cross-section\" is used to express the likelihood of interaction between particles. For a specified target particle and for a specified reaction or process produced by incident charged or uncharged particles of specified type and energy, it is the mean number of such reactions or processes divided by the incident-particle fluence." . "\u03C3" . . "Cross-section"@en . . . . . . . . . . . . . . . . . . . . . . . . "A" . . "Cross-sectional Area"@en . . . . "true"^^ . . . "Cubic Electric Dipole Moment per Square Energy"@en . . . . . . . . . "$cubic-exp-coef$"^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$\\alpha_V = \\frac{1}{V} \\; \\frac{dV}{dT}$, where $V$ is $volume$ and $T$ is thermodynamic temperature."^^ . "$\\alpha_v$"^^ . . . . "Hull\u00E1msz\u00E1m"@hu . "Volumenausdehnungskoeffizient"@de . "coefficient de dilatation volumique"@fr . "coefficiente di dilatazione volumica"@it . "coeficiente de dilataci\u00F3n c\u00FAbica"@es . "coeficiente de dilata\u00E7\u00E3o vol\u00FAmica"@pt . "cubic expansion coefficient"@en . "k\u00FCbik genle\u015Fme katsay\u0131s\u0131"@tr . "wsp\u00F3\u0142czynnik rozszerzalno\u015Bci obj\u0119to\u015Bciowej"@pl . "\u039A\u03C5\u03BC\u03B1\u03C4\u03B1\u03C1\u03B9\u03B8\u03BC\u03CC\u03C2"@el . "\u0412\u044A\u043B\u043D\u043E\u0432\u043E \u0447\u0438\u0441\u043B\u043E"@bg . "\u0422\u0435\u043C\u043F\u0435\u0440\u0430\u0442\u0443\u0440\u043D\u044B\u0439 \u043A\u043E\u044D\u0444\u0444\u0438\u0446\u0438\u0435\u043D\u0442"@ru . "\u05DE\u05E1\u05E4\u05E8 \u05D2\u05DC"@he . "\u0636\u0631\u06CC\u0628 \u0627\u0646\u0628\u0633\u0627\u0637 \u06AF\u0631\u0645\u0627\u06CC\u06CC"@fa . "\u0645\u0639\u0627\u0645\u0644 \u0627\u0644\u062A\u0645\u062F\u062F \u0627\u0644\u062D\u062C\u0645\u0649"@ar . "\u4F53\u81A8\u80C0\u7CFB\u6570"@zh . "\u7DDA\u81A8\u5F35\u4FC2\u6570"@ja . . . "\"Curie Temperature\" is the critical thermodynamic temperature of a ferromagnet."^^ . . "http://en.wikipedia.org/wiki/Curie_temperature"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Curie Temperature\" is the critical thermodynamic temperature of a ferromagnet." . "T_C" . . "Curie s\u0131cakl\u0131\u011F\u0131"@tr . "Curie temperature"@en . "Curie-Temperatur"@de . "Curieova teplota"@cs . "Punct Curie"@ro . "Suhu Curie"@ms . "punto di Curie"@it . "temperatura Curie"@pl . "temperatura de Curie"@es . "temperatura de Curie"@pt . "temp\u00E9rature de Curie"@fr . "\u0422\u043E\u0447\u043A\u0430 \u041A\u044E\u0440\u0438"@ru . "\u062F\u0631\u062C\u0629 \u062D\u0631\u0627\u0631\u0629 \u0643\u0648\u0631\u064A"@ar . "\u0646\u0642\u0637\u0647 \u06A9\u0648\u0631\u06CC"@fa . "\u0915\u094D\u092F\u0942\u0930\u0940 \u0924\u093E\u092A"@hi . "\u30AD\u30E5\u30EA\u30FC\u6E29\u5EA6"@ja . "\u5C45\u91CC\u70B9"@zh . . . . . . . . . "Currency Per Flight"@en . . . "\"Current Linkage\" is the net electric current through a surface delimited by a closed loop."^^ . . . . . . . "$current-linkage$"^^ . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-60"^^ . "$\\Theta$"^^ . "\"Current Linkage\" is the net electric current through a surface delimited by a closed loop." . . "Current Linkage"@en . . "ratio of the amount of substance divided by the related time"@en . . "Quotient Stoffmenge dividiert durch die zugeh\u00F6rige Zeit"@de . "0173-1#Z4-BAJ384#002" . . "current of the amount of subtance"@en-US . . "The canonical example of extrinsic curvature is that of a circle, which has curvature equal to the inverse of its radius everywhere. Smaller circles bend more sharply, and hence have higher curvature. The curvature of a smooth curve is defined as the curvature of its osculating circle at each point. The osculating circle of a sufficiently smooth plane curve at a given point on the curve is the circle whose center lies on the inner normal line and whose curvature is the same as that of the given curve at that point. This circle is tangent to the curve at the given point. The magnitude of curvature at points on physical curves can be measured in $diopters$ (also spelled $dioptre$) \u2014 this is the convention in optics."^^ . . "http://dbpedia.org/resource/Curvature"^^ . . "http://en.wikipedia.org/wiki/Curvature"^^ . "The canonical example of extrinsic curvature is that of a circle, which has curvature equal to the inverse of its radius everywhere. Smaller circles bend more sharply, and hence have higher curvature. The curvature of a smooth curve is defined as the curvature of its osculating circle at each point. The osculating circle of a sufficiently smooth plane curve at a given point on the curve is the circle whose center lies on the inner normal line and whose curvature is the same as that of the given curve at that point. This circle is tangent to the curve at the given point.\nThat is, given a point P on a smooth curve C, the curvature of C at P is defined to be 1/R where R is the radius of the osculating circle of C at P. The magnitude of curvature at points on physical curves can be measured in diopters (also spelled dioptre) \u2014 this is the convention in optics. [Wikipedia]," . . "Curvature"@en . . . "In mathematics \"Curvature\" is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this is defined in different ways depending on the context."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Curvature"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\kappa = \\frac{1}{\\rho}$, where $\\rho$ is the radius of the curvature."^^ . "$\\kappa$"^^ . "In mathematics \"Curvature\" is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this is defined in different ways depending on the context." . . "Curvature"@en . . . "cut-off current parameter as rating for fuses and switches, derived from the so-called Joule integral"@en . . "Durchlassstrom-Kennwert als Bemessungsgr\u00F6\u00DFe f\u00FCr Sicherungen und Schalter, welcher abgeleitet ist aus dem sogenannten Joule-Integral"@de . "0173-1#Z4-BAJ325#003" . . "I\u00B2t-value"@en-US . . "The \"Cyclotron Angular Frequency\" describes angular momentum vector precession about the external field axis with an angular frequency."^^ . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Electron_cyclotron_resonance"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\omega_c = \\frac{\\left | q \\right |}{m}B$, where $q$ is the electric charge, $m$ is its mass, and $B$ is the magnetic flux density."^^ . "$\\omega_c$"^^ . "The \"Cyclotron Angular Frequency\" describes angular momentum vector precession about the external field axis with an angular frequency." . . "Larmor Angular Frequency"@en . . . "The change in translational velocity including all losses for a propulsive system or module. Delta-V losses include, but are not limited to, gravity losses and steering losses."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Delta-v"^^ . "$\\bigtriangleup v$"^^ . "The change in translational velocity including all losses for a propulsive system or module. Delta-V losses include, but are not limited to, gravity losses and steering losses." . . "Delta-V"@en . . . "Mass of a system without the propellants, pressurants, reserve or residual fluids, personnel and personnel provisions, and cargo."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Mass of a system without the propellants, pressurants, reserve or residual fluids, personnel and personnel provisions, and cargo." . . "Dry Mass"@en . . . "The frequency derived from the period of time required to transmit one bit. This represents the amount of data transferred per second by a communications channel or a computing or storage device. Data rate is measured in units of bits per second (written \"b/s\" or \"bps\"), bytes per second (Bps), or baud. When applied to data rate, the multiplier prefixes \"kilo-\", \"mega-\", \"giga-\", etc. (and their abbreviations, \"k\", \"M\", \"G\", etc.) always denote powers of 1000. For example, 64 kbps is 64,000 bits per second. This contrasts with units of storage which use different prefixes to denote multiplication by powers of 1024, for example 1 kibibit = 1024 bits."^^ . . . . . . . . . "http://dbpedia.org/resource/Data_rate"^^ . . "The frequency derived from the period of time required to transmit one bit. This represents the amount of data transferred per second by a communications channel or a computing or storage device. Data rate is measured in units of bits per second (written \"b/s\" or \"bps\"), bytes per second (Bps), or baud. When applied to data rate, the multiplier prefixes \"kilo-\", \"mega-\", \"giga-\", etc. (and their abbreviations, \"k\", \"M\", \"G\", etc.) always denote powers of 1000. For example, 64 kbps is 64,000 bits per second. This contrasts with units of storage which use different prefixes to denote multiplication by powers of 1024, for example 1 kibibit = 1024 bits." . . "Data Rate"@en . . . . . "data transmission rate"@en-US . . . . . . . . . . . . "0112/2///62720#UAD027" . . "dataset of bits" . . . "0112/2///62720#UAD028" . . "dataset of bytes" . . "\"Debye-Waller Factor\" (DWF), named after Peter Debye and Ivar Waller, is used in condensed matter physics to describe the attenuation of x-ray scattering or coherent neutron scattering caused by thermal motion. Also, a factor by which the intensity of a diffraction line is reduced because of the lattice vibrations."^^ . . . "http://en.wikipedia.org/wiki/Debye\u2013Waller_factor"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$u = R - R_0$, where $R$ is the particle position vector and $R_0$ is the equilibrium position vector of a particle."^^ . "\"Debye-Waller Factor\" (DWF), named after Peter Debye and Ivar Waller, is used in condensed matter physics to describe the attenuation of x-ray scattering or coherent neutron scattering caused by thermal motion. Also, a factor by which the intensity of a diffraction line is reduced because of the lattice vibrations." . "D, B" . . "Debye-Waller Factor"@en . . "\"Debye Angular Frequency\" is the cut-off angular frequency in the Debye model of the vibrational spectrum of a solid."^^ . . . . . . . . . . . . "http://lamp.tu-graz.ac.at/~hadley/ss1/phonons/table/dosdebye.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$\\omega_b$"^^ . "\"Debye Angular Frequency\" is the cut-off angular frequency in the Debye model of the vibrational spectrum of a solid." . . "Debye Angular Frequency"@en . . . "\"Debye Angular Wavenumber\" is the cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid."^^ . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Debye Angular Wavenumber\" is the cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid." . "q_D" . . "Debye Angular Wavenumber"@en . . . "\"Debye Temperature\" is the temperature at which the highest-frequency mode (and hence all modes) are excited."^^ . . "http://en.wikipedia.org/wiki/Debye_model"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$\\Theta_D = \\frac{\\hbar\\omega_D}{k}$, where $k$ is the Boltzmann constant, $\\hbar$ is the reduced Planck constant, and $\\omega_D$ is the Debye angular frequency."^^ . "$\\Theta_D$"^^ . "\"Debye Temperature\" is the temperature at which the highest-frequency mode (and hence all modes) are excited." . . "Debye Temperature"@en . . "The \"Decay Constant\" is the proportionality between the size of a population of radioactive atoms and the rate at which the population decreases because of radioactive decay."^^ . . . "http://en.wikipedia.org/wiki/Exponential_decay"^^ . "http://www.britannica.com/EBchecked/topic/154945/decay-constant"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "Relative variation $\\frac{dN}{N}$ of the number $N$ of atoms or nuclei in a system, due to spontaneous emission from these atoms or nuclei during an infinitesimal time interval, divided by its duration $dt$, thus $\\lambda = -\\frac{1}{N}\\frac{dN}{dt}$."^^ . "$\\lambda$"^^ . "The \"Decay Constant\" is the proportionality between the size of a population of radioactive atoms and the rate at which the population decreases because of radioactive decay." . . "Decay Constant"@en . . . "The \"Degree of Dissociation\" is the fraction of original solute molecules that have dissociated."^^ . . "http://dbpedia.org/resource/Faraday_constant"^^ . . "http://en.wikipedia.org/wiki/Dissociation_(chemistry)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\alpha$"^^ . "The \"Degree of Dissociation\" is the fraction of original solute molecules that have dissociated." . . "Degree of Dissociation"@en . . "The mass density or density of a material is defined as its mass per unit volume. The symbol most often used for density is \\(\\rho\\). Mathematically, density is defined as mass divided by volume: \\(\\rho = m/V\\), where \\(\\rho\\) is the density, \\(m\\) is the mass, and \\(V\\) is the volume. In some cases, density is also defined as its weight per unit volume, although this quantity is more properly called specific weight."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Density"^^ . . . "0112/2///62720#UAD029" . "http://en.wikipedia.org/wiki/Density"^^ . "$\\rho = m/V$, where $\\rho$ is the density, $m$ is the mass, and $V$ is the volume."^^ . "$\\rho$"^^ . . "belongs to SOQ-ISO" . . "Density"@en . . . "$\\rho_c$"^^ . . "Density In Combustion Chamber"@en . . "\"Density of States\" is the number of vibrational modes in an infinitesimal interval of angular frequency divided by the range of that interval and by volume."^^ . . . "0112/2///62720#UAD030" . "http://en.wikipedia.org/wiki/Density_of_states"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Density of States\" is the number of vibrational modes in an infinitesimal interval of angular frequency divided by the range of that interval and by volume." . "g" . . "Density of states"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "$\\rho$"^^ . . "Density Of The Exhaust Gases"@en . . . "Depth typically refers to the vertical measure of length from the surface of a liquid."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Depth typically refers to the vertical measure of length from the surface of a liquid." . . "Depth"@en . . . "\"Dew Point Temperature\" is the temperature at which vapour in air reaches saturation."^^ . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "\"Dew Point Temperature\" is the temperature at which vapour in air reaches saturation." . "T_d" . . "Dew Point Temperature"@en . . . "In classical geometry, the \"Diameter\" of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. "^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Diameter"^^ . . "http://en.wikipedia.org/wiki/Diameter"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$d = 2r$, where $r$ is the radius of the circle."^^ . "In classical geometry, the \"Diameter\" of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. " . "d" . . "Durchmesser"@de . "diameter"@en . "diametro"@it . "diam\u00E8tre"@fr . "di\u00E1metro"@es . "di\u00E2metro"@pt . "premer"@sl . "pr\u016Fm\u011Br"@cs . "\u00E7ap"@tr . "\u015Brednica"@pl . "\u0434\u0438\u0430\u043C\u0435\u0442\u0440"@ru . "\u0642\u0637\u0631"@ar . "\u0642\u0637\u0631"@fa . "\u76F4\u5F84"@ja . "\u76F4\u5F84"@zh . . . "The pressure of blood in the arteries which rises to a maximum as blood is pumped out by the left ventricle (systole) and drops to a minimum in diastole. The systolic/diastolic pressure is normally ~120/80 mmHg in a young adult."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.oxfordreference.com/view/10.1093/acref/9780199549351.001.0001/acref-9780199549351-e-1162"^^ . "The pressure of blood in the arteries which rises to a maximum as blood is pumped out by the left ventricle (systole) and drops to a minimum in diastole. The systolic/diastolic pressure is normally ~120/80 mmHg in a young adult." . . "Diastolic Blood Pressure"@en . . . . "\"Diffusion Area\" in an infinite homogenous medium, is one-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves that class."^^ . . . . . . . . . . . . . . . . . . . . . . "http://encyclopedia2.thefreedictionary.com/diffusion+area"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Diffusion Area\" in an infinite homogenous medium, is one-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves that class." . "L^2" . . "Diffusion Area"@en . . . "The \"Diffusion Coefficient\" is a proportionality constant between the molar flux due to molecular diffusion and the gradient in the concentration of the species (or the driving force for diffusion). Diffusivity is encountered in Fick's law and numerous other equations of physical chemistry."^^ . . . "0112/2///62720#UAD031" . "http://en.wikipedia.org/wiki/Mass_diffusivity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$C_B \\left \\langle \\nu_B \\right \\rangle = -D grad C_B$, where $C_B$ the local molecular concentration of substance $B$ in the mixture and $\\left \\langle \\nu_B \\right \\rangle$ is the local average velocity of the molecules of $B$."^^ . "The \"Diffusion Coefficient\" is a proportionality constant between the molar flux due to molecular diffusion and the gradient in the concentration of the species (or the driving force for diffusion). Diffusivity is encountered in Fick's law and numerous other equations of physical chemistry." . "D" . . "Diffusionskoeffizient"@de . "coefficient de diffusion"@fr . "coefficiente di diffusione"@it . "coeficiente de difusi\u00F3n"@es . "coeficiente de difus\u00E3o"@pt . "diffusion coefficient"@en . "difuzijski koeficient"@sl . . "The \"Diffusion Coefficient for Fluence Rate\" is a proportionality constant between the ."^^ . "m" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Mass_diffusivity"^^ . "$D_\\varphi = -\\frac{J_x}{\\frac{\\partial d\\varphi}{\\partial dx}}$, where $J_x$ is the $x-component$ of the particle current and $\\varphi$ is the particle fluence rate."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Diffusion Coefficient for Fluence Rate\" is a proportionality constant between the ." . "D\u1D69" . . "Diffusion Coefficient for Fluence Rate"@en . . . "\"Diffusion Length\" is the average distance traveled by a particle, or a thermal neutron in a nuclear reactor, from the point at which it is formed to the point at which it is absorbed."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://encyclopedia2.thefreedictionary.com/diffusion+length"^^ . "$L = \\sqrt{L^2}$, where $L^2$ is the diffusion area."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Diffusion Length\" is the average distance traveled by a particle, or a thermal neutron in a nuclear reactor, from the point at which it is formed to the point at which it is absorbed." . "L" . . "Diffusion Length"@en . . . . . . . . "0112/2///62720#UAD032" . . "digit rate" . . "In dimensional analysis, a dimensionless quantity or quantity of dimension one is a quantity without an associated physical dimension. It is thus a \"pure\" number, and as such always has a dimension of 1. Dimensionless quantities are widely used in mathematics, physics, engineering, economics, and in everyday life (such as in counting). Numerous well-known quantities, such as $\\pi$, $\\epsilon$, and $\\psi$, are dimensionless. By contrast, non-dimensionless quantities are measured in units of length, area, time, etc. Dimensionless quantities are often defined as products or ratios of quantities that are not dimensionless, but whose dimensions cancel out when their powers are multiplied."^^ . . . . . . . . . . . . "http://dbpedia.org/resource/Dimensionless_quantity"^^ . . "http://en.wikipedia.org/wiki/Dimensionless_quantity"^^ . "U" . . "Dimensionless"@en . . . . . . . . . . . . . . . . . . "Dimensionless Ratio"@en . . . "\"Displacement\" is the shortest distance from the initial to the final position of a point P."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Displacement_(vector)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\Delta r = R_f - R_i$, where $R_f$ is the final position and $R_i$ is the initial position."^^ . "$\\Delta r$"^^ . "\"Displacement\" is the shortest distance from the initial to the final position of a point P." . . "Displacement"@en . . . "\"Displacement Current\" is a quantity appearing in Maxwell's equations that is defined in terms of the rate of change of electric displacement field. Displacement current has the units of electric current density, and it has an associated magnetic field just as actual currents do. However it is not an electric current of moving charges, but a time-varying electric field. In materials, there is also a contribution from the slight motion of charges bound in atoms, dielectric polarization."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Displacement_current"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$I_D= \\int_S J_D \\cdot e_n dA$, over a surface $S$, where $J_D$ is displacement current density and $e_n dA$ is the vector surface element."^^ . "\"Displacement Current\" is a quantity appearing in Maxwell's equations that is defined in terms of the rate of change of electric displacement field. Displacement current has the units of electric current density, and it has an associated magnetic field just as actual currents do. However it is not an electric current of moving charges, but a time-varying electric field. In materials, there is also a contribution from the slight motion of charges bound in atoms, dielectric polarization." . "I_D" . . "Displacement Current"@en . . . "\n$\\text{Displacement Current Density}$ is the time rate of change of the $\\textit{Electric Flux Density}$. \n This is a measure of how quickly the electric field changes if we observe it as a function of time. \n This is different than if we look at how the electric field changes spatially, that is, over a region of space for a fixed amount of time.\n "^^ . . "http://dbpedia.org/resource/Electric_flux"^^ . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "http://www.maxwells-equations.com/math/partial-electric-flux.php"^^ . "$J_D = \\frac{\\partial D}{\\partial t}$, where $D$ is electric flux density and $t$ is time."^^ . "$J_D$"^^ . . "Displacement Current Density"@en . . . "\"Displacement Vector of Ion\" is the ."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Displacement"^^ . "$u = R - R_0$, where $R$ is the particle position vector and $R_0$ is the equilibrium position vector of a particle."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Displacement Vector of Ion\" is the ." . "u" . . "Displacement Vector of Ion"@en . . . "Dissipance, or dissipation factor for sound power, is the ratio of dissipated sound power to incident sound power. The dissipation factor (DF) is a measure of loss-rate of energy of a mode of oscillation (mechanical, electrical, or electromechanical) in a dissipative system. It is the reciprocal of quality factor, which represents the quality of oscillation."^^ . . . "http://en.wikipedia.org/wiki/Dissipation_factor"^^ . "$\\delta = \\frac{P_d}{P_i}$, where $P_d$ is the dissipated sound power, and $P_i$ is the incident sound power."^^ . "$\\delta$"^^ . "Dissipance, or dissipation factor for sound power, is the ratio of dissipated sound power to incident sound power. The dissipation factor (DF) is a measure of loss-rate of energy of a mode of oscillation (mechanical, electrical, or electromechanical) in a dissipative system. It is the reciprocal of quality factor, which represents the quality of oscillation." . "belongs to SOQ-ISO" . . "Dissipance"@en . . "\"Distance\" is a numerical description of how far apart objects are. "^^ . . . . . "http://en.wikipedia.org/wiki/Distance"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Distance\" is a numerical description of how far apart objects are. " . "d" . . "Entfernung"@de . "Jarak"@ms . "Vzd\u00E1lenost"@cs . "distance"@en . "distance"@fr . "distancia"@es . "distanza"@it . "dist\u00E2ncia"@pt . "uzakl\u0131k"@tr . "\u0645\u0633\u0627\u0641\u062A"@fa . "\u8DDD\u79BB"@zh . . . . "s" . . "Distance Traveled During a Burn"@en . . "\"Donor Density\" is the number per volume of donor levels."^^ . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Donor Density\" is the number per volume of donor levels." . "n_d" . . "Donor Density"@en . . . "\"Donor Ionization Energy\" is the ionization energy of a donor."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Ionization_energy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Donor Ionization Energy\" is the ionization energy of a donor." . "E_d" . . "Donor Ionization Energy"@en . . . . "\"Dose Equivalent} (former), or \\textit{Equivalent Absorbed Radiation Dose}, usually shortened to \\textit{Equivalent Dose\", is a computed average measure of the radiation absorbed by a fixed mass of biological tissue, that attempts to account for the different biological damage potential of different types of ionizing radiation. The equivalent dose to a tissue is found by multiplying the absorbed dose, in gray, by a dimensionless \"quality factor\" \\(Q\\), dependent upon radiation type, and by another dimensionless factor \\(N\\), dependent on all other pertinent factors. N depends upon the part of the body irradiated, the time and volume over which the dose was spread, even the species of the subject."^^ . . . . . . . "http://dbpedia.org/resource/Equivalent_dose"^^ . . "0112/2///62720#UAD033" . "http://en.wikipedia.org/wiki/Equivalent_dose"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "At the point of interest in tissue, $H = DQ$, where $D$ is the absorbed dose and $Q$ is the quality factor at that point."^^ . . "H" . . "Dose Equivalent"@en . . . "\"Dose Equivalent Quality Factor\" is a factor in the caculation and measurement of dose equivalent, by which the absorbed dose is to be weighted in order to account for different biological effectiveness of radiations, for radiation protection purposes."^^ . . . "http://en.wikipedia.org/wiki/Equivalent_dose"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Dose Equivalent Quality Factor\" is a factor in the caculation and measurement of dose equivalent, by which the absorbed dose is to be weighted in order to account for different biological effectiveness of radiations, for radiation protection purposes." . "Q" . . "Dose Equivalent Quality Factor"@en . . . "0112/2///62720#UAD034" . . "dose equivalent rate" . . . "0112/2///62720#UAD255" . . "dots per inch" . . "In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment such as air or water."^^ . . "In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment such as air or water." . . . "C_D" . . "Drag Coefficient"@en . . "In fluid dynamics, drag refers to forces which act on a solid object in the direction of the relative fluid flow velocity. Unlike other resistive forces such as dry friction, which is nearly independent of velocity, drag forces depend on velocity.\nDrag forces always decrease fluid velocity relative to the solid object in the fluid's path." . . "In fluid dynamics, drag refers to forces which act on a solid object in the direction of the relative fluid flow velocity. Unlike other resistive forces such as dry friction, which is nearly independent of velocity, drag forces depend on velocity.\nDrag forces always decrease fluid velocity relative to the solid object in the fluid's path." . "D or F_D" . . "Drag Force"@en . . "Dry measures are units of volume used to measure bulk commodities which are not gas or liquid. They are typically used in agriculture, agronomy, and commodity markets to measure grain, dried beans, and dried and fresh fruit; formerly also salt pork and fish. They are also used in fishing for clams, crabs, etc. and formerly for many other substances (for example coal, cement, lime) which were typically shipped and delivered in a standardized container such as a barrel. In the original metric system, the unit of dry volume was the stere, but this is not part of the modern metric system; the liter and the cubic meter ($m^{3}$) are now used. However, the stere is still widely used for firewood."^^ . . . . . . . . . . "http://en.wikipedia.org/wiki/Dry_measure"^^ . . "Dry Volume"@en . . . "Duv is a metric that is short for Delta u,v (not to be confused with Delta u',v') and describes the distance of a light color point from the black body curve."^^ . . . "https://www.waveformlighting.com/tech/calculate-duv-from-cie-1931-xy-coordinates"^^ . "https://www1.eere.energy.gov/buildings/publications/pdfs/ssl/led-color-characteristics-factsheet.pdf"^^ . "Duv is a metric that is short for Delta u,v (not to be confused with Delta u',v') and describes the distance of a light color point from the black body curve." . . "Delta u,v"@en . . . "Kinetic (or dynamic) friction occurs when two objects are moving relative to each other and rub together (like a sled on the ground)."^^ . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Friction"^^ . . "http://en.wikipedia.org/wiki/Friction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "Kinetic (or dynamic) friction occurs when two objects are moving relative to each other and rub together (like a sled on the ground)." . . "Dynamic Friction"@en . . . "Kinetic (or dynamic) friction occurs when two objects are moving relative to each other and rub together (like a sled on the ground)."^^ . . . "http://dbpedia.org/resource/Friction"^^ . . "http://en.wikipedia.org/wiki/Friction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\mu = \\frac{F}{N}$, where $F$ is the tangential component of the contact force and $N$ is the normal component of the contact force between two sliding bodies."^^ . "$\\mu$"^^ . "Kinetic (or dynamic) friction occurs when two objects are moving relative to each other and rub together (like a sled on the ground)." . . . . "Dynamic Friction Coefficient"@en . . . "Dynamic Pressure (indicated with q, or Q, and sometimes called velocity pressure) is the quantity defined by: $q = 1/2 * \\rho v^{2}$, where (using SI units), $q$ is dynamic pressure in $pascals$, $\\rho$ is fluid density in $kg/m^{3}$ (for example, density of air) and $v $ is fluid velocity in $m/s$."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Dynamic_pressure"^^ . . "q" . . "Dynamic Pressure"@en . . . "A measure of the molecular frictional resistance of a fluid as calculated using Newton's law."^^ . . . . . . . . . . . . . . . . . . . . . . . . "0112/2///62720#UAD035" . "http://dictionary.reference.com/browse/dynamic+viscosity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\tau_{xz} = \\eta\\frac{dv_x}{dz}$, where $\\tau_{xz}$ is shear stress in a fluid moving with a velocity gradient $\\frac{dv_x}{dz}$ perpendicular to the plane of shear. "^^ . "$\\mu$"^^ . "A measure of the molecular frictional resistance of a fluid as calculated using Newton's law." . . . "Kelikatan dinamik"@ms . "Viscozitate dinamic\u0103"@ro . "dinamik akmazl\u0131k"@tr . "dinami\u010Dna viskoznost"@sl . "dynamic viscosity"@en . "dynamische Viskosit\u00E4t"@de . "lepko\u015B\u0107 dynamiczna"@pl . "viscosidad din\u00E1mica"@es . "viscosidade din\u00E2mica"@pt . "viscosit\u00E0 dinamica"@it . "viscosit\u00E9 dynamique"@fr . "viskozita"@cs . "\u0434\u0438\u043D\u0430\u043C\u0438\u0447\u0435\u0441\u043A\u0443\u044E \u0432\u044F\u0437\u043A\u043E\u0441\u0442\u044C"@ru . "\u0644\u0632\u0648\u062C\u0629"@ar . "\u06AF\u0631\u0627\u0646\u0631\u0648\u06CC \u062F\u06CC\u0646\u0627\u0645\u06CC\u06A9\u06CC/\u0648\u06CC\u0633\u06A9\u0648\u0632\u06CC\u062A\u0647 \u062F\u06CC\u0646\u0627\u0645\u06CC\u06A9\u06CC"@fa . "\u0936\u094D\u092F\u093E\u0928\u0924\u093E"@hi . "\u52A8\u529B\u7C98\u5EA6"@zh . "\u7C98\u5EA6"@ja . "viscosit\u00E0 di taglio"@it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "V_o" . . "Earth Closest Approach Vehicle Velocity"@en . . . . . "0112/2///62720#UAD365" . . "earthquake magnitude" . . "The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a positive number that defines its shape."^^ . . "$\\varepsilon$"^^ . "The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a positive number that defines its shape." . . "Eccentricity Of Orbit"@en . . "The velocity of an exhaust stream after reduction by effects such as friction, non-axially directed flow, and pressure differences between the inside of the rocket and its surroundings. The effective exhaust velocity is one of two factors determining the thrust, or accelerating force, that a rocket can develop, the other factor being the quantity of reaction mass expelled from the rocket in unit time. In most cases, the effective exhaust velocity is close to the actual exhaust velocity."^^ . . "The velocity of an exhaust stream after reduction by effects such as friction, non-axially directed flow, and pressure differences between the inside of the rocket and its surroundings. The effective exhaust velocity is one of two factors determining the thrust, or accelerating force, that a rocket can develop, the other factor being the quantity of reaction mass expelled from the rocket in unit time. In most cases, the effective exhaust velocity is close to the actual exhaust velocity." . "v_{e}" . . "Effective Exhaustvelocity"@en . . "\"Effective Mass\" is used in the motional equation for electrons in solid state bodies, depending on the wavenumber and corresponding to its velocity and energy level."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Effective_mass_(solid-state_physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$m^* = \\hbar^2k(\\frac{d\\varepsilon}{dk})$, where $\\hbar$ is the reduced Planck constant, $k$ is the wavenumber, and $\\varepsilon$ is the energy of the electron."^^ . "\"Effective Mass\" is used in the motional equation for electrons in solid state bodies, depending on the wavenumber and corresponding to its velocity and energy level." . "m^*" . . "Effective Mass"@en . . . "The \"Effective Multiplication Factor\" is the multiplication factor for a finite medium."^^ . . . "http://en.wikipedia.org/wiki/Nuclear_chain_reaction#Effective_neutron_multiplication_factor"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Effective Multiplication Factor\" is the multiplication factor for a finite medium." . "k_{eff}" . . "Effective Multiplication Factor"@en . . . . "Efficiency is the ratio of output power to input power."^^ . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Deformation_(mechanics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\eta = \\frac{P_{out}}{P_{in}}$, where $P_{out}$ is the output power and $P_{in}$ is the input power."^^ . "$\\eta$"^^ . "Efficiency is the ratio of output power to input power." . . "Wirkungsgrad"@de . "efficiency"@en . "efficienza"@it . "efici\u00EAncia"@pt . "rendement"@fr . "rendimiento"@es . "sprawno\u015B\u0107"@pl . "\u043A\u043E\u044D\u0444\u0444\u0438\u0446\u0438\u0435\u043D\u0442 \u043F\u043E\u043B\u0435\u0437\u043D\u043E\u0433\u043E \u0434\u0435\u0439\u0441\u0442\u0432\u0438\u044F"@ru . "\u0643\u0641\u0627\u0621\u0629"@ar . "\u52B9\u7387"@ja . "\u6548\u7387"@zh . "rendimento"@it . . . . . "0112/2///62720#UAD036" . . "Einstein coefficients" . . "Given two atomic states of energy $E_j$ and $E_k$. Let $E_j > E_k$. Assume the atom is bathed in radiation of energy density $u(w)$. Transitions between these states can take place in three different ways. Spontaneous, induced/stimulated emission, and induced absorption. $A_jk$ represents the Einstein transition probability for spontaneous emission."^^ . . . "http://electron6.phys.utk.edu/qm2/modules/m10/einstein.htm"^^ . "$\\frac{-dN_j}{dt} = A_jkN_j$, where $-dN_j$ is the number of molecules spontaneously leaving the state j for the state k during a time interval of duration $dt$, $N_j$ is the number of molecules in the state j, and $E_j > E_k$."^^ . "A_jkN_j" . . "Einstein Transition Probability"@en . . "nuclear constant for the special transition where the probability of the absorption, spontaneous emission or induced emission of energy depends on the number of existing quantums of light, expressed as energy density in the wave model of light: energy divided by volume and frequency"@en . . "atomare Konstante f\u00FCr den speziellen \u00DCbergang, wobei die Wahrscheinlichkeit der Absorption, der spontanen Emission und der induzierte Emission von Energie abh\u00E4ngig ist von der Zahl der vorhandenen Lichtquanten, ausgedr\u00FCckt als Energiedichte im Wellenmodell des Lichtes: Energie durch Volumen und Frequenz"@de . "0173-1#Z4-BAJ456#001" . . "Einstein transition probability for spontaneous or induced emission and absorption"@en-US . . "\"Electric Charge\" is a fundamental conserved property of some subatomic particles, which determines their electromagnetic interaction. Electrically charged matter is influenced by, and produces, electromagnetic fields. The electric charge on a body may be positive or negative. Two positively charged bodies experience a mutual repulsive force, as do two negatively charged bodies. A positively charged body and a negatively charged body experience an attractive force. Electric charge is carried by discrete particles and can be positive or negative. The sign convention is such that the elementary electric charge \\(e\\), that is, the charge of the proton, is positive. The SI derived unit of electric charge is the coulomb."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "0112/2///62720#UAD037" . "http://en.wikipedia.org/wiki/Electric_charge"^^ . "http://en.wikipedia.org/wiki/Electric_charge?oldid=492961669"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$dQ = Idt$, where $I$ is electric current."^^ . . "Q" . . "Cas elektrik"@ms . "Charge \u00E9lectrique"@fr . "Elektrick\u00FD n\u00E1boj"@cs . "carga el\u00E9ctrica"@es . "carga el\u00E9trica"@pt . "carica elettrica"@it . "electric charge"@en . "elektrik y\u00FCk\u00FC"@tr . "elektrische Ladung"@de . "elektri\u010Dni naboj"@sl . "elektromos t\u00F6lt\u00E9s"@hu . "onus electricum"@la . "sarcin\u0103 electric\u0103"@ro . "\u0142adunek elektryczny"@pl . "\u0397\u03BB\u03B5\u03BA\u03C4\u03C1\u03B9\u03BA\u03CC \u03C6\u03BF\u03C1\u03C4\u03AF\u03BF"@el . "\u0415\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u0438 \u0437\u0430\u0440\u044F\u0434"@bg . "\u042D\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u0438\u0439 \u0437\u0430\u0440\u044F\u0434"@ru . "\u05DE\u05D8\u05E2\u05DF \u05D7\u05E9\u05DE\u05DC\u05D9"@he . "\u0627\u0644\u0634\u062D\u0646\u0629 \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0626\u064A\u0629"@ar . "\u0628\u0627\u0631 \u0627\u0644\u06A9\u062A\u0631\u06CC\u06A9\u06CC"@fa . "\u0935\u093F\u0926\u094D\u092F\u0941\u0924 \u0906\u0935\u0947\u0917 \u092F\u093E \u0935\u093F\u0926\u094D\u092F\u0941\u0924 \u092C\u0939\u093E\u0935"@hi . "\u7535\u8377"@zh . "\u96FB\u8377"@ja . . "cantitate de electricitate"@ro . . "In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively."^^ . . . . . . "$charge-density$"^^ . . "http://en.wikipedia.org/wiki/Charge_density"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "http://www.maxwells-equations.com/pho/charge-density.php"^^ . "$\\rho = \\frac{dQ}{dV}$, where $Q$ is electric charge and $V$ is Volume."^^ . "$\\rho$"^^ . "In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively." . . . "Electric Charge Density"@en . . . "In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively. The respective SI units are $C \\cdot $, $m^{-1}$, $C \\cdot m^{-2}$ or $C \\cdot m^{-3}$."^^ . . . "http://en.wikipedia.org/wiki/Charge_density"^^ . "$\\lambda$"^^ . . "Electric Charge Line Density"@en . . "In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively."^^ . . "$linear-charge-density$"^^ . . "http://en.wikipedia.org/wiki/Charge_density"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\rho_l = \\frac{dQ}{dl}$, where $Q$ is electric charge and $l$ is length."^^ . "$\\rho_l$"^^ . "$\\tau$"^^ . "In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively." . . "Electric Charge Linear Density"@en . . . "\"Electric Charge Per Amount Of Substance\" is the charge assocated with a given amount of substance. Un the ISO and SI systems this is $1 mol$."^^ . . . . . "Electric charge per amount of substance"@en . . "In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively. The respective SI units are $C \\cdot m^{-1}$, $C \\cdot m^{-2}$ or $C \\cdot m^{-3}$."^^ . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Charge_density"^^ . "$\\sigma$"^^ . . "Electric charge per area"@en . . "\"Electric Charge Per Mass\" is the charge associated with a specific mass of a substance. In the SI and ISO systems this is $1 kg$."^^ . . . . . . . . . . . . . "Electric Charge Per Mass"@en . . "In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively."^^ . . . "$surface-charge-density$"^^ . . "http://en.wikipedia.org/wiki/Charge_density"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\rho_A = \\frac{dQ}{dA}$, where $Q$ is electric charge and $A$ is Area."^^ . "$\\rho_A$"^^ . "In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively." . . "Electric Charge Surface Density"@en . . . "In electromagnetism, charge density is a measure of electric charge per unit volume of space, in one, two or three dimensions. More specifically: the linear, surface, or volume charge density is the amount of electric charge per unit length, surface area, or volume, respectively. The respective SI units are $C \\cdot m^{-1}$, $C \\cdot m^{-2}$ or $C \\cdot m^{-3}$."^^ . . . . . . . . . . "http://en.wikipedia.org/wiki/Charge_density"^^ . "$\\rho$"^^ . . "Electric Charge Volume Density"@en . . "\"Electric Conductivity} or \\textit{Specific Conductance\" is a measure of a material's ability to conduct an electric current. When an electrical potential difference is placed across a conductor, its movable charges flow, giving rise to an electric current. The conductivity $\\sigma$ is defined as the ratio of the electric current density $J$ to the electric field $E$: $J = \\sigma E$. In isotropic materials, conductivity is scalar-valued, however in general, conductivity is a tensor-valued quantity."^^ . . . . . "$\\sigma$"^^ . . "Kekonduksian elektrik"@ms . "conducibilit\u00E0 elettrica"@it . "conductividad el\u00E9ctrica"@es . "conductivit\u00E9 \u00E9lectrique"@fr . "condutividade el\u00E9trica"@pt . "electric conductivity"@en . "elektrik iletkenli\u011Fi"@tr . "elektrische Leitf\u00E4higkeit"@de . "elektri\u010Dna prevodnost"@sl . "\u0631\u0633\u0627\u0646\u0627\u064A\u0649 \u0627\u0644\u06A9\u062A\u0631\u064A\u06A9\u0649/\u0647\u062F\u0627\u06CC\u062A \u0627\u0644\u06A9\u062A\u0631\u06CC\u06A9\u06CC"@fa . "\u7535\u5BFC\u7387"@zh . . "\"Electric Current\" is the flow (movement) of electric charge. The amount of electric current through some surface, for example, a section through a copper conductor, is defined as the amount of electric charge flowing through that surface over time. Current is a scalar-valued quantity. Electric current is one of the base quantities in the International System of Quantities, ISQ, on which the International System of Units, SI, is based. "^^ . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Electric_current"^^ . . "0112/2///62720#UAD039" . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "\"Electric Current\" is the flow (movement) of electric charge. The amount of electric current through some surface, for example, a section through a copper conductor, is defined as the amount of electric charge flowing through that surface over time. Current is a scalar-valued quantity. Electric current is one of the base quantities in the International System of Quantities, ISQ, on which the International System of Units, SI, is based. " . . "I" . . "Arus elektrik"@ms . "Elektrick\u00FD proud"@cs . "corrente elettrica"@it . "corrente el\u00E9trica"@pt . "corriente el\u00E9ctrica"@es . "curent electric"@ro . "electric current"@en . "elektrik ak\u0131m\u0131"@tr . "elektrische Stromst\u00E4rke"@de . "elektri\u010Dni tok"@sl . "elektromos \u00E1ramer\u0151ss\u00E9g"@hu . "fluxio electrica"@la . "intensit\u00E9 de courant \u00E9lectrique"@fr . "pr\u0105d elektryczny"@pl . "\u0388\u03BD\u03C4\u03B1\u03C3\u03B7 \u03B7\u03BB\u03B5\u03BA\u03C4\u03C1\u03B9\u03BA\u03BF\u03CD \u03C1\u03B5\u03CD\u03BC\u03B1\u03C4\u03BF\u03C2"@el . "\u0415\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u0438 \u0442\u043E\u043A"@bg . "\u0421\u0438\u043B\u0430 \u044D\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u043E\u0433\u043E \u0442\u043E\u043A\u0430"@ru . "\u05D6\u05E8\u05DD \u05D7\u05E9\u05DE\u05DC\u05D9"@he . "\u062A\u064A\u0627\u0631 \u0643\u0647\u0631\u0628\u0627\u0626\u064A"@ar . "\u062C\u0631\u06CC\u0627\u0646 \u0627\u0644\u06A9\u062A\u0631\u06CC\u06A9\u06CC"@fa . "\u0935\u093F\u0926\u094D\u092F\u0941\u0924 \u0927\u093E\u0930\u093E"@hi . "\u7535\u6D41"@zh . "\u96FB\u6D41"@ja . . "\"Electric Current Density\" is a measure of the density of flow of electric charge; it is the electric current per unit area of cross section. Electric current density is a vector-valued quantity. Electric current, \\(I\\), through a surface \\(S\\) is defined as \\(I = \\int_S J \\cdot e_n dA\\), where \\(e_ndA\\) is the vector surface element."^^ . . . . . . . . . "http://dbpedia.org/resource/Current_density"^^ . . "0112/2///62720#UAD040" . "http://maxwells-equations.com/density/current.php"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$J = \\rho v$, where $\\rho$ is electric current density and $v$ is volume."^^ . . "J" . . "Ak\u0131m yo\u011Funlu\u011Fu"@tr . "Densitate de curent"@ro . "G\u0119sto\u015B\u0107 pr\u0105du elektrycznego"@pl . "Hustota elektrick\u00E9ho proudu"@cs . "Ketumpatan arus elektrik"@ms . "densidad de corriente"@es . "densidade de corrente el\u00E9trica"@pt . "densit\u00E0 di corrente elettrica"@it . "densit\u00E9 de courant"@fr . "electric current density"@en . "elektrische Stromdichte"@de . "gostota elektri\u010Dnega toka"@sl . "\u043F\u043B\u043E\u0442\u043D\u043E\u0441\u0442\u044C \u0442\u043E\u043A\u0430"@ru . "\u0643\u062B\u0627\u0641\u0629 \u0627\u0644\u062A\u064A\u0627\u0631"@ar . "\u0686\u06AF\u0627\u0644\u06CC \u062C\u0631\u06CC\u0627\u0646 \u0627\u0644\u06A9\u062A\u0631\u06CC\u06A9\u06CC"@fa . "\u0927\u093E\u0930\u093E \u0918\u0928\u0924\u094D\u0935"@hi . "\u7535\u6D41\u5BC6\u5EA6"@zh . "\u96FB\u6D41\u5BC6\u5EA6"@ja . "areic electric current"@en . "keluasan arus elektrik"@ms . . . . . "Electric Current per Angle"@en . . . . . "Electric Current per Unit Energy"@en . . . . "Electric Current per Unit Length"@en . . "\"Electric Current per Unit Temperature\" is used to express how a current is subject to temperature. Originally used in Wien's Law to describe phenomena related to filaments. One use today is to express how a current generator derates with temperature."^^ . . . . . . . . "\"Electric Current per Unit Temperature\" is used to express how a current is subject to temperature. Originally used in Wien's Law to describe phenomena related to filaments. One use today is to express how a current generator derates with temperature." . . "Electric Current per Unit Temperature"@en . . "\"Electric Current Phasor\" is a representation of current as a sinusoidal integral quantity using a complex quantity whose argument is equal to the initial phase and whose modulus is equal to the root-mean-square value. A phasor is a constant complex number, usually expressed in exponential form, representing the complex amplitude (magnitude and phase) of a sinusoidal function of time. Phasors are used by electrical engineers to simplify computations involving sinusoids, where they can often reduce a differential equation problem to an algebraic one."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Phasor_(electronics)"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-26"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "When $i = \\hat{I} \\cos{(\\omega t + \\alpha)}$, where $i$ is the electric current, $\\omega$ is angular frequence, $t$ is time, and $\\alpha$ is initial phase, then $\\underline{I} = Ie^{ja}$."^^ . "$\\underline{I}$"^^ . "\"Electric Current Phasor\" is a representation of current as a sinusoidal integral quantity using a complex quantity whose argument is equal to the initial phase and whose modulus is equal to the root-mean-square value. A phasor is a constant complex number, usually expressed in exponential form, representing the complex amplitude (magnitude and phase) of a sinusoidal function of time. Phasors are used by electrical engineers to simplify computations involving sinusoids, where they can often reduce a differential equation problem to an algebraic one." . . "Electric Current Phasor"@en . . "\"Electric Dipole Moment\" is a measure of the separation of positive and negative electrical charges in a system of (discrete or continuous) charges. It is a vector-valued quantity. If the system of charges is neutral, that is if the sum of all charges is zero, then the dipole moment of the system is independent of the choice of a reference frame; however in a non-neutral system, such as the dipole moment of a single proton, a dependence on the choice of reference point arises. In such cases it is conventional to choose the reference point to be the center of mass of the system or the center of charge, not some arbitrary origin. This convention ensures that the dipole moment is an intrinsic property of the system. The electric dipole moment of a substance within a domain is the vector sum of electric dipole moments of all electric dipoles included in the domain."^^ . . . . "0112/2///62720#UAD041" . "http://en.wikipedia.org/wiki/Electric_dipole_moment"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$E_p = -p \\cdot E$, where $E_p$ is the interaction energy of the molecule with electric dipole moment $p$ and an electric field with electric field strength $E$.\n\n$p = q(r_+ - r_i)$, where $r_+$ and $r_-$ are the position vectors to carriers of electric charge $a$ and $-q$, respectively."^^ . "\"Electric Dipole Moment\" is a measure of the separation of positive and negative electrical charges in a system of (discrete or continuous) charges. It is a vector-valued quantity. If the system of charges is neutral, that is if the sum of all charges is zero, then the dipole moment of the system is independent of the choice of a reference frame; however in a non-neutral system, such as the dipole moment of a single proton, a dependence on the choice of reference point arises. In such cases it is conventional to choose the reference point to be the center of mass of the system or the center of charge, not some arbitrary origin. This convention ensures that the dipole moment is an intrinsic property of the system. The electric dipole moment of a substance within a domain is the vector sum of electric dipole moments of all electric dipoles included in the domain." . "p" . . "Dip\u00F3lov\u00FD moment"@cs . "Momen dwikutub elektrik"@ms . "electric dipole moment"@en . "elektrik dipol momenti"@tr . "elektrisches Dipolmoment"@de . "elektryczny moment dipolowy"@pl . "moment dipolaire"@fr . "moment electric dipolar"@ro . "momento de dipolo el\u00E9ctrico"@es . "momento di dipolo elettrico"@it . "momento do dipolo el\u00E9trico"@pt . "\u042D\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u0438\u0439 \u0434\u0438\u043F\u043E\u043B\u044C\u043D\u044B\u0439 \u043C\u043E\u043C\u0435\u043D\u0442"@ru . "\u0639\u0632\u0645 \u062B\u0646\u0627\u0626\u064A \u0642\u0637\u0628"@ar . "\u06AF\u0634\u062A\u0627\u0648\u0631 \u062F\u0648\u0642\u0637\u0628\u06CC \u0627\u0644\u06A9\u062A\u0631\u06CC\u06A9\u06CC"@fa . "\u0935\u093F\u0926\u094D\u092F\u0941\u0924 \u0926\u094D\u0935\u093F\u0927\u094D\u0930\u0941\u0935 \u0906\u0918\u0942\u0930\u094D\u0923"@hi . "\u7535\u5076\u6781\u77E9"@zh . "\u96FB\u6C17\u53CC\u6975\u5B50"@ja . . . . . "Cubic Electric Dipole Moment per Square Energy"@en . . . . . "Quartic Electric Dipole Moment per Cubic Energy"@en . . "In a dielectric material the presence of an electric field E causes the bound charges in the material (atomic nuclei and their electrons) to slightly separate, inducing a local electric dipole moment. The Electric Displacement Field, $D$, is a vector field that accounts for the effects of free charges within such dielectric materials. This describes also the charge density on an extended surface that could be causing the field."^^ . . . . . . . . . . . . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "http://www.oxfordreference.com/view/10.1093/acref/9780199233991.001.0001/acref-9780199233991-e-895"^^ . "$D = \\epsilon_0 E + P$, where $\\epsilon_0$ is the electric constant, $E$ is electric field strength, and $P$ is electric polarization."^^ . "D" . . "Electric Displacement"@en . . . . . . . . . . . . . . "D" . . "Electric Displacement Field"@en . . . "The space surrounding an electric charge or in the presence of a time-varying magnetic field has a property called an electric field. This electric field exerts a force on other electrically charged objects. In the idealized case, the force exerted between two point charges is inversely proportional to the square of the distance between them. (Coulomb's Law)."^^ . . . . "http://dbpedia.org/resource/Electric_field"^^ . "$E$"^^ . . "http://en.wikipedia.org/wiki/Electric_field"^^ . "The space surrounding an electric charge or in the presence of a time-varying magnetic field has a property called an electric field. This electric field exerts a force on other electrically charged objects. In the idealized case, the force exerted between two point charges is inversely proportional to the square of the distance between them. (Coulomb's Law)." . . "Electric Field"@en . . "\\(\\textbf{Electric Field Strength}\\) is the magnitude and direction of an electric field, expressed by the value of \\(E\\), also referred to as \\(\\color{indigo} {\\textit{electric field intensity}}\\) or simply the electric field."^^ . . . . . . . . . . . . "0112/2///62720#UAD042" . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\mathbf{E} = \\mathbf{F}/q$, where $\\mathbf{F}$ is force and $q$ is electric charge, of a test particle at rest."^^ . "$\\mathbf{E} $"^^ . . "E" . . "Elektromos mez\u0151"@hu . "Kekuatan medan elektrik"@ms . "c\u00E2mp electric"@ro . "electric field strength"@en . "elektrick\u00E9 pole"@cs . "elektriksel alan kuvveti"@tr . "elektrische Feldst\u00E4rke"@de . "intensidad de campo el\u00E9ctrico"@es . "intensidade de campo el\u00E9trico"@pt . "intensit\u00E0 di campo elettrico"@it . "intensit\u00E9 de champ \u00E9lectrique"@fr . "jakost elektri\u010Dnega polja"@sl . "nat\u0119\u017Cenie pola elektrycznego"@pl . "\u0397\u03BB\u03B5\u03BA\u03C4\u03C1\u03B9\u03BA\u03CC \u03C0\u03B5\u03B4\u03AF\u03BF"@el . "\u0415\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u043D\u043E \u043F\u043E\u043B\u0435"@bg . "\u041D\u0430\u043F\u0440\u044F\u0436\u0435\u043D\u043D\u043E\u0441\u0442\u044C \u044D\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u043E\u0433\u043E \u043F\u043E\u043B\u044F"@ru . "\u05E9\u05D3\u05D4 \u05D7\u05E9\u05DE\u05DC\u05D9"@he . "\u0634\u062F\u0629 \u0627\u0644\u0645\u062C\u0627\u0644 \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0626\u064A"@ar . "\u0634\u062F\u062A \u0645\u06CC\u062F\u0627\u0646 \u0627\u0644\u06A9\u062A\u0631\u06CC\u06A9\u06CC"@fa . "\u0935\u093F\u0926\u094D\u092F\u0941\u0924\u094D-\u0915\u094D\u0937\u0947\u0924\u094D\u0930"@hi . "\u96FB\u5834"@zh . "\u96FB\u754C\u5F37\u5EA6"@ja . . "\"Electric Flux\" through an area is defined as the electric field multiplied by the area of the surface projected in a plane perpendicular to the field. Electric Flux is a scalar-valued quantity."^^ . . . "http://dbpedia.org/resource/Electric_flux"^^ . "$electirc-flux$"^^ . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\Psi = \\int_S D \\cdot e_n dA$, over a surface $S$, where $D$ is electric flux density and $e_n dA$ is the vector surface element."^^ . "$\\Psi$"^^ . "\"Electric Flux\" through an area is defined as the electric field multiplied by the area of the surface projected in a plane perpendicular to the field. Electric Flux is a scalar-valued quantity." . . "Electric Flux"@en . . . "\\(\\textbf{Electric Flux Density}\\), also referred to as \\(\\textit{Electric Displacement}\\), is related to electric charge density by the following equation: \\(\\text{div} \\; D = \\rho\\), where \\(\\text{div}\\) denotes the divergence."^^ . . . . . . . . . . . "http://dbpedia.org/resource/Electric_flux"^^ . . . "0112/2///62720#UAD043" . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\mathbf{D} = \\epsilon_0 E + P$, where $\\epsilon_0$ is the electric constant, $\\mathbf{E} $ is electric field strength, and $P$ is electric polarization."^^ . "$\\mathbf{D}$"^^ . . . "Densidad de flujo el\u00E9ctrico"@es . "Elektrick\u00E1 indukce"@cs . "Induction \u00E9lectrique"@fr . "Induc\u021Bie electric\u0103"@ro . "Indukcja elektryczna"@pl . "Ketumpatan fluks elektrik"@ms . "campo de deslocamento el\u00E9trico"@pt . "electric flux density"@en . "elektrik ak\u0131 yo\u011Funlu\u011Fu"@tr . "elektrische Flussdichte"@de . "spostamento elettrico"@it . "\u042D\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u0430\u044F \u0438\u043D\u0434\u0443\u043A\u0446\u0438\u044F"@ru . "\u0625\u0632\u0627\u062D\u0629 \u0643\u0647\u0631\u0628\u0627\u0626\u064A\u0629"@ar . "\u0686\u06AF\u0627\u0644\u06CC \u0634\u0627\u0631 \u0627\u0644\u06A9\u062A\u0631\u06CC\u06A9\u06CC"@fa . "\u96FB\u4F4D\u79FB"@zh . "\u96FB\u675F\u5BC6\u5EA6"@ja . "anjakan"@ms . "densit\u00E9 de flux \u00E9lectrique"@fr . "displacement"@en . "elektrische Induktion"@de . "elektrische Verschiebung"@de . "induzione elettrica"@it . "yer de\u011Fi\u015Ftirme"@tr . . . "\"Electric Polarizability\" is the relative tendency of a charge distribution, like the electron cloud of an atom or molecule, to be distorted from its normal shape by an external electric field, which is applied typically by inserting the molecule in a charged parallel-plate capacitor, but may also be caused by the presence of a nearby ion or dipole."^^ . . . "http://en.wikipedia.org/wiki/Polarizability"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\alpha_{i,j} = \\frac{\\partial p_i}{\\partial E_j}$, where $p_i$ is the cartesian component along the $i-axis$ of the electric dipole moment induced by the applied electric field strength acting on the molecule, and $E_j$ is the component along the $j-axis$ of this electric field strength."^^ . "$\\alpha$"^^ . "\"Electric Polarizability\" is the relative tendency of a charge distribution, like the electron cloud of an atom or molecule, to be distorted from its normal shape by an external electric field, which is applied typically by inserting the molecule in a charged parallel-plate capacitor, but may also be caused by the presence of a nearby ion or dipole." . . "Kepengkutuban elektrik"@ms . "Kutuplanabilirlik"@tr . "Polarisabilit\u00E9"@fr . "Polarizabilidad"@es . "Polarizovatelnost"@cs . "Polaryzowalno\u015B\u0107"@pl . "electric polarizability"@en . "elektrische Polarisierbarkeit"@de . "polarizabilidade"@pt . "polarizzabilit\u00E0 elettrica"@it . "\u041F\u043E\u043B\u044F\u0440\u0438\u0437\u0443\u0435\u043C\u043E\u0441\u0442\u044C"@ru . "\u0642\u0627\u0628\u0644\u064A\u0629 \u0627\u0633\u062A\u0642\u0637\u0627\u0628"@ar . "\u0642\u0637\u0628\u06CC\u062A \u067E\u0630\u06CC\u0631\u06CC \u0627\u0644\u06A9\u062A\u0631\u06CC\u06A9\u06CC"@fa . "\u5206\u6975\u7387"@ja . "\u6975\u5316\u6027"@zh . . "\"Electric Polarization\" is the relative shift of positive and negative electric charge in opposite directions within an insulator, or dielectric, induced by an external electric field. Polarization occurs when an electric field distorts the negative cloud of electrons around positive atomic nuclei in a direction opposite the field. This slight separation of charge makes one side of the atom somewhat positive and the opposite side somewhat negative. In some materials whose molecules are permanently polarized by chemical forces, such as water molecules, some of the polarization is caused by molecules rotating into the same alignment under the influence of the electric field. One of the measures of polarization is electric dipole moment, which equals the distance between the slightly shifted centres of positive and negative charge multiplied by the amount of one of the charges. Polarization P in its quantitative meaning is the amount of dipole moment p per unit volume V of a polarized material, P = p/V."^^ . . . . . "0112/2///62720#UAD044" . "http://www.britannica.com/EBchecked/topic/182690/electric-polarization"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$P =\\frac{dp}{dV}$, where $p$ is electic charge density and $V$ is volume."^^ . "\"Electric Polarization\" is the relative shift of positive and negative electric charge in opposite directions within an insulator, or dielectric, induced by an external electric field. Polarization occurs when an electric field distorts the negative cloud of electrons around positive atomic nuclei in a direction opposite the field. This slight separation of charge makes one side of the atom somewhat positive and the opposite side somewhat negative. In some materials whose molecules are permanently polarized by chemical forces, such as water molecules, some of the polarization is caused by molecules rotating into the same alignment under the influence of the electric field. One of the measures of polarization is electric dipole moment, which equals the distance between the slightly shifted centres of positive and negative charge multiplied by the amount of one of the charges. Polarization P in its quantitative meaning is the amount of dipole moment p per unit volume V of a polarized material, P = p/V." . "P" . . "electric polarization"@en . "elektrische Polarisation"@de . "polarisation \u00E9lectrique"@fr . "polarizaci\u00F3n el\u00E9ctrica"@es . "polariza\u00E7\u00E3o el\u00E9ctrica"@pt . "polarizzazione elettrica"@it . "polaryzacja elektryczna"@pl . "\u044D\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u0430\u044F \u043F\u043E\u043B\u044F\u0440\u0438\u0437\u0430\u0446\u0438\u044F"@ru . "\u0625\u0633\u062A\u0642\u0637\u0627\u0628 \u0643\u0647\u0631\u0628\u0627\u0626\u064A"@ar . "\u96FB\u6C17\u5206\u6975"@ja . . . . "The Electric Potential is a scalar valued quantity associated with an electric field. The electric potential $\\phi(x)$ at a point, $x$, is formally defined as the line integral of the electric field taken along a path from x to the point at infinity. If the electric field is static, that is time independent, then the choice of the path is arbitrary; however if the electric field is time dependent, taking the integral a different paths will produce different results."^^ . . . . . . . . . . . . . . . . . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$-\\text{grad} \\; V = E + \\frac{\\partial A}{\\partial t}$, where $E$ is electric field strength, $A$ is magentic vector potential and $t$ is time."^^ . "$\\phi$"^^ . "V" . . "Keupayaan elektrik"@ms . "electric potential"@en . "elektrick\u00FD potenci\u00E1l"@cs . "elektrik potansiyeli"@tr . "elektrisches Potenzial"@de . "elektri\u010Dni potencial"@sl . "elektromos fesz\u00FClts\u00E9g , elektromos potenci\u00E1lk\u00FCl\u00F6nbs\u00E9g"@hu . "potencial el\u00E9ctrico"@es . "potencial el\u00E9trico"@pt . "potencja\u0142 elektryczny"@pl . "potentiel \u00E9lectrique"@fr . "potenziale elettrico"@it . "poten\u021Bial electric"@ro . "tensio electrica"@la . "\u0415\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u0438 \u043F\u043E\u0442\u0435\u043D\u0446\u0438\u0430\u043B"@bg . "\u044D\u043B\u0435\u043A\u0442\u0440\u043E\u0441\u0442\u0430\u0442\u0438\u0447\u0435\u0441\u043A\u0438\u0439 \u043F\u043E\u0442\u0435\u043D\u0446\u0438\u0430\u043B"@ru . "\u05DE\u05EA\u05D7 \u05D7\u05E9\u05DE\u05DC\u05D9 (\u05D4\u05E4\u05E8\u05E9 \u05E4\u05D5\u05D8\u05E0\u05E6\u05D9\u05D0\u05DC\u05D9\u05DD)"@he . "\u0643\u0645\u0648\u0646 \u0643\u0647\u0631\u0628\u0627\u0626\u064A"@ar . "\u067E\u062A\u0627\u0646\u0633\u06CC\u0644 \u0627\u0644\u06A9\u062A\u0631\u06CC\u06A9\u06CC"@fa . "\u0935\u093F\u0926\u094D\u092F\u0941\u0924 \u0935\u093F\u092D\u0935"@hi . "\u96FB\u4F4D"@ja . "\u96FB\u52E2"@zh . "vis electromotrix"@la . . "\"Electric Potential Difference\" is a scalar valued quantity associated with an electric field."^^ . . . . . . . . . . . . . . . . . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$V_{ab} = \\int_{r_a(C)}^{r_b} (E +\\frac{\\partial A}{\\partial t}) $, where $E$ is electric field strength, $A$ is magentic vector potential, $t$ is time, and $r$ is position vector along a curve C from a point $a$ to $b$."^^ . "\"Electric Potential Difference\" is a scalar valued quantity associated with an electric field." . . "V_{ab}" . . "Voltan Perbezaan keupayaan elektrik"@ms . "diferen\u021B\u0103 de poten\u021Bial electric"@ro . "differenza di potenziale elettrico"@it . "electric potential difference"@en . "elektrick\u00E9 nap\u011Bt\u00ED"@cs . "elektrische Spannung"@de . "elektri\u010Dna napetost"@sl . "gerilim"@tr . "napi\u0119cie elektryczne"@pl . "tension \u00E9lectrique"@fr . "tensi\u00F3n el\u00E9ctrica"@es . "tens\u00E3o el\u00E9trica (diferen\u00E7a de potencial)"@pt . "\u044D\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u043E\u0435 \u043D\u0430\u043F\u0440\u044F\u0436\u0435\u043D\u0438\u0435"@ru . "\u062C\u0647\u062F \u0643\u0647\u0631\u0628\u0627\u0626\u064A"@ar . "\u0648\u0644\u062A\u0627\u0698/ \u0627\u062E\u062A\u0644\u0627\u0641 \u067E\u062A\u0627\u0646\u0633\u06CC\u0644"@fa . "\u0935\u093F\u092D\u0935\u093E\u0902\u0924\u0930"@hi . "\u96FB\u5727"@ja . "\u96FB\u58D3"@zh . "ketegangan"@ms . "tension"@en . "tensione elettrica"@it . "tensiune"@ro . . "\"Electric Power\" is the rate at which electrical energy is transferred by an electric circuit. In the simple case of direct current circuits, electric power can be calculated as the product of the potential difference in the circuit (V) and the amount of current flowing in the circuit (I): $P = VI$, where $P$ is the power, $V$ is the potential difference, and $I$ is the current. However, in general electric power is calculated by taking the integral of the vector cross-product of the electrical and magnetic fields over a specified area."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "$p = ui$, where $u$ is instantaneous voltage and $i$ is instantaneous electric current."^^ . "P_E" . . "Wirkleistung"@de . "electric power"@en . "moc czynna"@pl . "potencia activa"@es . "potenza attiva"@it . "pot\u00EAncia activa"@pt . "puissance active"@fr . "\u0627\u0644\u0642\u062F\u0631\u0629 \u0627\u0644\u0641\u0639\u0627\u0644\u0629"@ar . "\u6709\u529F\u529F\u7387"@zh . "\u6709\u52B9\u96FB\u529B"@ja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "M_P" . . "Electric Propulsion Propellant Mass"@en . . . "The Electric Quadrupole Moment is a quantity which describes the effective shape of the ellipsoid of nuclear charge distribution. A non-zero quadrupole moment Q indicates that the charge distribution is not spherically symmetric. By convention, the value of Q is taken to be positive if the ellipsoid is prolate and negative if it is oblate. In general, the electric quadrupole moment is tensor-valued."^^ . . . "The Electric Quadrupole Moment is a quantity which describes the effective shape of the ellipsoid of nuclear charge distribution. A non-zero quadrupole moment Q indicates that the charge distribution is not spherically symmetric. By convention, the value of Q is taken to be positive if the ellipsoid is prolate and negative if it is oblate. In general, the electric quadrupole moment is tensor-valued." . "Q" . . "Momen kuadrupol elektrik"@ms . "electric quadrupole moment"@en . "elektrik kuadrupol momenti"@tr . "elektrisches Quadrupolmoment"@de . "elektryczny moment kwadrupolowy"@pl . "moment quadrupolaire \u00E9lectrique"@fr . "momento de cuadrupolo el\u00E9ctrico"@es . "momento de quadrupolo el\u00E9trico"@pt . "momento di quadrupolo elettrico"@it . "\u042D\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u0438\u0439 \u043A\u0432\u0430\u0434\u0440\u0443\u043F\u043E\u043B\u044C\u043D\u044B\u0439 \u043C\u043E\u043C\u0435\u043D\u0442"@ru . "\u06AF\u0634\u062A\u0627\u0648\u0631 \u0686\u0647\u0627\u0631 \u0642\u0637\u0628\u06CC \u0627\u0644\u06A9\u062A\u0631\u06CC\u06A9\u06CC"@fa . "\u56DB\u6975\u5B50"@ja . "\u7535\u56DB\u6781\u77E9"@zh . . "\"Electric Susceptibility\" is the ratio of electric polarization to electric field strength, normalized to the electric constant. The definition applies to an isotropic medium. For an anisotropic medium, electric susceptibility is a second order tensor."^^ . . "http://dbpedia.org/resource/Permittivity"^^ . "$e-susceptibility$"^^ . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\chi = \\frac{P}{(\\epsilon_0 E)}$, where $P$ is electric polorization, $\\epsilon_0$ is the electric constant, and $E$ is electric field strength."^^ . "$\\chi$"^^ . "\"Electric Susceptibility\" is the ratio of electric polarization to electric field strength, normalized to the electric constant. The definition applies to an isotropic medium. For an anisotropic medium, electric susceptibility is a second order tensor." . . "electric susceptibility"@en . "elektrische Suszeptibilit\u00E4t"@de . "podatno\u015B\u0107 elektryczna"@pl . "susceptibilidad el\u00E9ctrica"@es . "susceptibilidade el\u00E9ctrica"@pt . "susceptibilit\u00E9 \u00E9lectrique"@fr . "suscettivit\u00E0 elettrica"@it . "\u044D\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u0430\u044F \u0432\u043E\u0441\u043F\u0440\u0438\u0438\u043C\u0447\u0438\u0432\u043E\u0441\u0442\u044C"@ru . "\u0627\u0644\u0645\u062A\u0623\u062B\u0631\u064A\u0629 \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0626\u064A\u0629\u060C \u0633\u0631\u0639\u0629 \u0627\u0644\u062A\u0623\u062B\u0631 \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0626\u064A\u0629"@ar . "\u96FB\u6C17\u611F\u53D7\u7387"@ja . . . "susceptywno\u015B\u0107 elektryczna"@pl . "\u0434\u0438\u044D\u043B\u0435\u043A\u0442\u0440\u0438\u0447\u0435\u0441\u043A\u0430\u044F \u0432\u043E\u0441\u043F\u0440\u0438\u0438\u043C\u0447\u0438\u0432\u043E\u0441\u0442\u044C"@ru . . "measure of the capability of a material to conduct electric current, the value of which is defined as the reciprocal of the electrical resistance"@en . . . "0112/2///62720#UAD038" . "Ma\u00DF f\u00FCr die F\u00E4higkeit eines Stoffes, den elektrischen Strom zu leiten, das wertm\u00E4\u00DFig definiert ist als Kehrwert des elektrischen Widerstandes"@de . . "0173-1#Z4-BAJ223#002" . . "electrical conductance" . "electrical conductance"@en-US . . . "$\\xi$"^^ . . "Electrical Power To Mass Ratio"@en . . "different properties of materials which impede the electrical current in its movement when the free charged particles in these materials are set in motion by electrical fields and/or electrical potentials "@en . "unterschiedlich ausgepr\u00E4gte Eigenschaft von Stoffen, den elektrischen Strom in seiner Bewegung zu hemmen, wenn die freien Ladungstr\u00E4ger in diesen Stoffen durch elektrische Felder und/oder elektrische Potentiale in Bewegung gesetzt werden"@de . . . "0112/2///62720#UAD045" . . "0173-1#Z4-BAJ215#003" . . "electrical resistance"@en-US . . "\"Electrolytic Conductivity\" of an electrolyte solution is a measure of its ability to conduct electricity."^^ . . . "http://en.wikipedia.org/wiki/Conductivity_(electrolytic)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$x = \\frac{J}{E}$, where $J$ is the electrolytic current density and $E$ is the electric field strength."^^ . "\"Electrolytic Conductivity\" of an electrolyte solution is a measure of its ability to conduct electricity." . "x" . . "Electrolytic Conductivity"@en . . "\n$\\text{Electromagnetic Energy Density}$, also known as the $\\color{indigo} {\\text{Volumic Electromagnetic Energy}}$, is the energy associated with an electromagnetic field, per unit volume of the field.\n "^^ . . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-64"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$w = (1/2) ( \\mathbf{E} \\cdot \\mathbf{D} + \\mathbf{B} \\cdot \\mathbf{H})$, where $\\mathbf{E}$ is electric field strength, $\\mathbf{D}$ is electric flux density, $\\mathbf{M}$ is magnetic flux density, and $\\mathbf{H}$ is magnetic field strength."^^ . "w" . . "Electromagnetic Energy Density"@en . . . . . . "\"Permeability} is the degree of magnetization of a material that responds linearly to an applied magnetic field. In general permeability is a tensor-valued quantity. The definition given applies to an isotropic medium. For an anisotropic medium permeability is a second order tensor. In electromagnetism, permeability is the measure of the ability of a material to support the formation of a magnetic field within itself. In other words, it is the degree of magnetization that a material obtains in response to an applied magnetic field. Magnetic permeability is typically represented by the Greek letter $\\mu$. The term was coined in September, 1885 by Oliver Heaviside. The reciprocal of magnetic permeability is \\textit{Magnetic Reluctivity\"."^^ . . . . . "http://dbpedia.org/resource/Permeability"^^ . . . "http://en.wikipedia.org/wiki/Permeability_(electromagnetism)"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\mu = \\frac{B}{H}$, where $B$ is magnetic flux density, and $H$ is magnetic field strength."^^ . "$\\mu$"^^ . . "Permeability"@en . . . . . . "The ratio of the electromagnetic permeability of a specific medium to the electromagnetic permeability of free space."^^ . . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "The ratio of the electromagnetic permeability of a specific medium to the electromagnetic permeability of free space." . . . . "Electromagnetic Permeability Ratio"@en . . "\"Electromagnetic Wave Phase Speed\" is the ratio of angular velocity and wavenumber."^^ . . . . . . . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-66"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$c = w/k$ where $w$ is angular velocity and $k$ is angular wavenumber."^^ . "\"Electromagnetic Wave Phase Speed\" is the ratio of angular velocity and wavenumber." . "c" . . "Electromagnetic Wave Phase Speed"@en . . "In physics, electromotive force, or most commonly $emf$ (seldom capitalized), or (occasionally) electromotance is that which tends to cause current (actual electrons and ions) to flow. More formally, $emf$ is the external work expended per unit of charge to produce an electric potential difference across two open-circuited terminals. \"Electromotive Force\" is deprecated in the ISO System of Quantities."^^ . . . . . . . . . . . . . . "http://dbpedia.org/resource/Electromotive_force"^^ . . "E" . . "Daya gerak elektrik"@ms . "Elektromotor kuvvet"@tr . "Elektromotorick\u00E9 nap\u011Bt\u00ED"@cs . "electromotive force"@en . "elektromotorische Kraft"@de . "elektromotorna sila"@sl . "force \u00E9lectromotrice"@fr . "forza elettromotrice"@it . "for\u00E7a eletromotriz"@pt . "for\u021B\u0103 electromotoare"@ro . "fuerza electromotriz"@es . "si\u0142a elektromotoryczna"@pl . "\u044D\u043B\u0435\u043A\u0442\u0440\u043E\u0434\u0432\u0438\u0436\u0443\u0449\u0430\u044F \u0441\u0438\u043B\u0430"@ru . "\u0642\u0648\u0629 \u0645\u062D\u0631\u0643\u0629 \u0643\u0647\u0631\u0628\u0627\u0626\u064A\u0629"@ar . "\u0646\u06CC\u0631\u0648\u06CC \u0645\u062D\u0631\u06A9 \u0627\u0644\u06A9\u062A\u0631\u06CC\u06A9\u06CC"@fa . "\u0935\u093F\u0926\u094D\u092F\u0941\u0924\u0935\u093E\u0939\u0915 \u092C\u0932"@hi . "\u8D77\u96FB\u529B"@ja . "\u96FB\u52D5\u52E2"@zh . . . "\"Electron Affinity\" is the energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor. The the amount of energy released when an electron is added to a neutral atom or molecule to form a negative ion."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Electron_affinity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Electron Affinity\" is the energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor. The the amount of energy released when an electron is added to a neutral atom or molecule to form a negative ion." . "\u03C7" . . "Electron Affinity"@en . . . "\"Electron Density\" is the number of electrons per volume in conduction bands. It is the measure of the probability of an electron being present at a specific location."^^ . . . . . . . . . "http://en.wikipedia.org/wiki/Electron_density"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Electron Density\" is the number of electrons per volume in conduction bands. It is the measure of the probability of an electron being present at a specific location." . "n" . . "Electron Density"@en . . . "\"Electron Mean Free Path\" is the mean free path of electrons."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Thermal_conductivity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Electron Mean Free Path\" is the mean free path of electrons." . "l_e" . . "Electron Mean Free Path"@en . . . . "0112/2///62720#UAD119" . . "electron mobility" . . "\"Electron Radius\", also known as the Lorentz radius or the Thomson scattering length, is based on a classical (i.e., non-quantum) relativistic model of the electron."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Classical_electron_radius"^^ . "$r_e = \\frac{e^2}{4\\pi m_e c_0^2}$, where $e$ is the elementary charge, $\\varepsilon_0$ is the electric constant, item $m_e$ is the rest mass of electrons, and $c_0$ is the speed of light in vacuum."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Electron Radius\", also known as the Lorentz radius or the Thomson scattering length, is based on a classical (i.e., non-quantum) relativistic model of the electron." . "r_e" . . "Electron Radius"@en . . . "Velocity at apogee for an elliptical orbit velocity"^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Velocity at apogee for an elliptical orbit velocity" . "V_a" . . "Elliptical Orbit Apogee Velocity"@en . . . "Velocity at apogee for an elliptical orbit velocity."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Velocity at apogee for an elliptical orbit velocity." . "V_p" . . "Elliptical Orbit Perigee Velocity"@en . . . "Emissivity of a material (usually written $\\varepsilon$ or e) is the relative ability of its surface to emit energy by radiation."^^ . . . "http://en.wikipedia.org/wiki/Emissivity"^^ . "$\\varepsilon = \\frac{M}{M_b}$, where $M$ is the radiant exitance of a thermal radiator and $M_b$ is the radiant exitance of a blackbody at the same temperature."^^ . "$\\varepsilon$"^^ . . "Emissivity"@en . . "Energy is the quantity characterizing the ability of a system to do work."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Energy"^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "Energy is the quantity characterizing the ability of a system to do work." . . "E" . . "Energie"@cs . "Energie"@de . "Tenaga"@ms . "energia , munka , h\u0151"@hu . "energia"@es . "energia"@it . "energia"@la . "energia"@pl . "energia"@pt . "energie"@ro . "energija"@sl . "energy"@en . "enerji"@tr . "\u00E9nergie"@fr . "\u0388\u03C1\u03B3\u03BF - \u0395\u03BD\u03AD\u03C1\u03B3\u03B5\u03B9\u03B1"@el . "\u0415\u043D\u0435\u0440\u0433\u0438\u044F"@bg . "\u042D\u043D\u0435\u0440\u0433\u0438\u044F"@ru . "\u05D0\u05E0\u05E8\u05D2\u05D9\u05D4 \u05D5\u05E2\u05D1\u05D5\u05D3\u05D4"@he . "\u0627\u0644\u0637\u0627\u0642\u0629"@ar . "\u0627\u0646\u0631\u0698\u06CC"@fa . "\u090A\u0930\u094D\u091C\u093E"@hi . "\u30A8\u30CD\u30EB\u30AE\u30FC"@ja . "\u80FD\u91CF"@zh . . . . . . . . "saved quantity of energy which can be used physically or chemically"@en . . "0112/2///62720#UAD046" . "gespeicherte Energiemenge, die physikalisch oder chemisch nutzbar ist"@de . "0173-1#Z4-BAJ319#002" . . "energy content" . "energy content"@en-US . . "Energy density is defined as energy per unit volume. The SI unit for energy density is the joule per cubic meter."^^ . . . . . . . "$m^{-1} \\cdot kg \\cdot s^{-2}$" . "$ft^{-1} \\cdot lb \\cdot s^{-2}$"^^ . "$m^{-1} \\cdot kg \\cdot s^{-2}$"^^ . "$L^{-1} \\cdot M \\cdot T^{-2}$"^^ . "http://dbpedia.org/resource/Energy_density"^^ . . "0112/2///62720#UAD047" . "http://en.wikipedia.org/wiki/Energy_density"^^ . "Energy density is defined as energy per unit volume. The SI unit for energy density is the joule per cubic meter." . . . "Energy Density"@en . . "\"Energy Density of States\" refers to electrons or other entities, e.g. phonons. It can, for example, refer to amount of substance instead of volume."^^ . . . . "http://en.wikipedia.org/wiki/Density_of_states"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$\\rho(E) = n_E(E) = \\frac{dN(E)}{dE}\\frac{1}{V}$, where $N(E)$ is the total number of states with energy less than $E$, and $V$ is the volume."^^ . "\"Energy Density of States\" refers to electrons or other entities, e.g. phonons. It can, for example, refer to amount of substance instead of volume." . "n_E" . . "Energy Density of States"@en . . "Energy expenditure is dependent on a person's sex, metabolic rate, body-mass composition, the thermic effects of food, and activity level. The approximate energy expenditure of a man lying in bed is $1.0\\,kilo\\,calorie\\,per\\,hour\\,per\\,kilogram$. For slow walking (just over two miles per hour), $3.0\\,kilo\\,calorie\\,per\\,hour\\,per\\,kilogram$. For fast steady running (about 10 miles per hour), $16.3\\,kilo\\,calorie\\,per\\,hour\\,per\\,kilogram$.\nFemales expend about 10 per cent less energy than males of the same size doing a comparable activity. For people weighing the same, individuals with a high percentage of body fat usually expend less energy than lean people, because fat is not as metabolically active as muscle."^^ . . "http://www.oxfordreference.com/view/10.1093/acref/9780198631477.001$.0001/acref-9780198631477-e-594"^^ . . "Energy Expenditure"@en . . "\"Energy Fluence\" can be used to describe the energy delivered per unit area"^^ . . . . . . "http://en.wikipedia.org/wiki/Fluence"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\Psi = \\frac{dR}{dA}$, where $dR$ describes the sum of radiant energies, exclusive of rest energy, of all particles incident on a small spherical domain, and $dA$ describes the cross-sectional area of that domain."^^ . "$\\Psi$"^^ . "\"Energy Fluence\" can be used to describe the energy delivered per unit area" . . "Energy Fluence"@en . . "\"Energy Fluence Rate\" can be used to describe the energy fluence delivered per unit time."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Fluence"^^ . "$\\Psi = \\frac{d\\Psi}{dt}$, where $d\\Psi$ is the increment of the energy fluence during an infinitesimal time interval with duration $dt$."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Energy Fluence Rate\" can be used to describe the energy fluence delivered per unit time." . "\u03A8" . . "Energy Fluence Rate"@en . . . "The \"Energy Imparted\", is a physical quantity associated with the energy delivered to a particular volume of matter by all the directly and indirectly ionizing particles (i.e. charged and uncharged) entering that volume."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.answers.com/topic/energy-imparted"^^ . "For ionizing radiation in the matter in a given 3D domain, $\\varepsilon = \\sum_i \\varepsilon_i$, where the energy deposit, $\\varepsilon_i$ is the energy deposited in a single interaction $i$, and is given by $\\varepsilon_i = \\varepsilon_{in} - \\varepsilon_{out} + Q$, where $\\varepsilon_{in}$ is the energy of the incident ionizing particle, excluding rest energy, $\\varepsilon_{out}$ is the sum of the energies of all ionizing particles leaving the interaction, excluding rest energy, and $Q$ is the change in the rest energies of the nucleus and of all particles involved in the interaction."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Energy Imparted\", is a physical quantity associated with the energy delivered to a particular volume of matter by all the directly and indirectly ionizing particles (i.e. charged and uncharged) entering that volume." . "\u03B5" . . "Energy Imparted"@en . . . "The internal energy is the total energy contained by a thermodynamic system. It is the energy needed to create the system, but excludes the energy to displace the system's surroundings, any energy associated with a move as a whole, or due to external force fields. Internal energy has two major components, kinetic energy and potential energy. The internal energy (U) is the sum of all forms of energy (Ei) intrinsic to a thermodynamic system: $ U = \\sum_i E_i $"^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Internal_energy"^^ . . . . "http://en.wikipedia.org/wiki/Internal_energy"^^ . "U" . . "Notranja energija"@sl . "Tenaga dalaman"@ms . "energia interna"@it . "energia interna"@pt . "energia wewn\u0119trzna"@pl . "energie intern\u0103"@ro . "energ\u00EDa interna"@es . "innere Energie"@de . "internal energy"@en . "vnit\u0159n\u00ED energie"@cs . "\u00E9nergie interne"@fr . "\u0130\u00E7 enerji"@tr . "\u0432\u043D\u0443\u0442\u0440\u0435\u043D\u043D\u044F\u044F \u044D\u043D\u0435\u0440\u0433\u0438\u044F"@ru . "\u0627\u0646\u0631\u0698\u06CC \u062F\u0631\u0648\u0646\u06CC"@fa . "\u0637\u0627\u0642\u0629 \u062F\u0627\u062E\u0644\u064A\u0629"@ar . "\u0906\u0928\u094D\u0924\u0930\u093F\u0915 \u090A\u0930\u094D\u091C\u093E"@hi . "\u5185\u80FD"@zh . "\u5185\u90E8\u30A8\u30CD\u30EB\u30AE\u30FC"@ja . "energia termodinamica"@it . "tenaga termodinamik"@ms . "thermodynamic energy"@en . "thermodynamische Energie"@de . "\u00E9nergie thermodynamique"@fr . . . "The kinetic energy of an object is the energy which it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Kinetic_energy"^^ . . "http://en.wikipedia.org/wiki/Kinetic_energy"^^ . "The kinetic energy of an object is the energy which it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity." . . "Energie cinetic\u0103"@ro . "Kinetik enerji"@tr . "Tenaga kinetik"@ms . "energia cinetica"@it . "energia cin\u00E9tica"@pt . "energia kinetyczna"@pl . "energ\u00EDa cin\u00E9tica"@es . "kinetic energy"@en . "kinetick\u00E1 energie"@cs . "kinetische Energie"@de . "\u00E9nergie cin\u00E9tique"@fr . "\u043A\u0438\u043D\u0435\u0442\u0438\u0447\u0435\u0441\u043A\u0430\u044F \u044D\u043D\u0435\u0440\u0433\u0438\u044F"@ru . "\u0627\u0646\u0631\u0698\u06CC \u062C\u0646\u0628\u0634\u06CC"@fa . "\u0637\u0627\u0642\u0629 \u062D\u0631\u0643\u064A\u0629"@ar . "\u0917\u0924\u093F\u091C \u090A\u0930\u094D\u091C\u093E"@hi . "\u52A8\u80FD"@zh . "\u904B\u52D5\u30A8\u30CD\u30EB\u30AE\u30FC"@ja . . . "\"Energy Level\" is the ionization energy for an electron at the Fermi energy in the interior of a substance."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Energy Level\" is the ionization energy for an electron at the Fermi energy in the interior of a substance." . "E" . . "Energy Level"@en . . . "Energy per unit area is a measure of the energy either impinging upon or generated from a given unit of area. This can be a measure of the \"toughness\" of a material, being the amount of energy that needs to be applied per unit area of a crack to cause it to fracture. This is a constant for a given material.."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.calculator.org/property.aspx?name=energy%20per%20unit%20area"^^ . "Energy per unit area is a measure of the energy either impinging upon or generated from a given unit of area. This can be a measure of the \"toughness\" of a material, being the amount of energy that needs to be applied per unit area of a crack to cause it to fracture. This is a constant for a given material.." . . "Energy per Area"@en . . "\"Energy Per Area Electric Charge\" is the amount of electric energy associated with a unit of area."^^ . . . "\"Energy Per Area Electric Charge\" is the amount of electric energy associated with a unit of area." . . "Energy Per Area Electric Charge"@en . . "Voltage is a representation of the electric potential energy per unit charge. If a unit of electrical charge were placed in a location, the voltage indicates the potential energy of it at that point. In other words, it is a measurement of the energy contained within an electric field, or an electric circuit, at a given point. Voltage is a scalar quantity. The SI unit of voltage is the volt, such that $1 volt = 1 joule/coulomb$."^^ . . . . . . . . . . . . . . . . . . "http://physics.about.com/od/glossary/g/voltage.htm"^^ . "V" . . "Energy per electric charge"@en . . "\"Energy Per Square Magnetic Flux Density\" is a measure of energy for a unit of magnetic flux density."^^ . . . "\"Energy Per Square Magnetic Flux Density\" is a measure of energy for a unit of magnetic flux density." . . "Energy Per Square Magnetic Flux Density"@en . . . . . "Energy and work per mass amount of substance"@en . . "\"Energy Per Square Magnetic Flux Density\" is a measure of energy for a unit of magnetic flux density."^^ . . "true"^^ . . "\"Energy Per Square Magnetic Flux Density\" is a measure of energy for a unit of magnetic flux density." . . "Energy Per Square Magnetic Flux Density"@en . . . . . "Energy per temperature"@en . . . . "Square Energy"@en . . "In thermodynamics, $\\textit{enthalpy}$ is the sum of the internal energy $U$ and the product of pressure $p$ and volume $V$ of a system. The characteristic function (also known as thermodynamic potential) $\\textit{enthalpy}$ used to be called $\\textit{heat content}$, which is why it is conventionally indicated by $H$. The specific enthalpy of a working mass is a property of that mass used in thermodynamics, defined as $h=u+p \\cdot v$, where $u$ is the specific internal energy, $p$ is the pressure, and $v$ is specific volume. In other words, $h = H / m$ where $m$ is the mass of the system. The SI unit for $\\textit{Specific Enthalpy}$ is $\\textit{joules per kilogram}$"^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Enthalpy"^^ . . "http://en.citizendium.org/wiki/Enthalpy"^^ . "http://en.wikipedia.org/wiki/Enthalpy"^^ . "$H = U + pV$, where $U$ is internal energy, $p$ is pressure and $V$ is volume."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "H" . . "Entalpi"@ms . "Entalpi"@tr . "Entalpie"@ro . "Enthalpie"@de . "entalpia"@it . "entalpia"@pl . "entalpia"@pt . "entalpie"@cs . "entalpija"@sl . "entalp\u00EDa"@es . "enthalpie"@fr . "enthalpy"@en . "\u044D\u043D\u0442\u0430\u043B\u044C\u043F\u0438\u044F"@ru . "\u0622\u0646\u062A\u0627\u0644\u067E\u06CC"@fa . "\u0645\u062D\u062A\u0648\u0649 \u062D\u0631\u0627\u0631\u064A"@ar . "\u092A\u0942\u0930\u094D\u0923 \u090A\u0937\u094D\u092E\u093E"@hi . "\u30A8\u30F3\u30BF\u30EB\u30D4\u30FC"@ja . "\u7113"@zh . . . . "When a small amount of heat $dQ$ is received by a system whose thermodynamic temperature is $T$, the entropy of the system increases by $dQ/T$, provided that no irreversible change takes place in the system."^^ . . "http://dbpedia.org/resource/Entropy"^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "S" . . "Entropi"@ms . "Entropie"@de . "entropi"@tr . "entropia"@it . "entropia"@pl . "entropia"@pt . "entropie"@cs . "entropie"@fr . "entropie"@ro . "entropija"@sl . "entropy"@en . "entrop\u00EDa"@es . "\u042D\u043D\u0442\u0440\u043E\u043F\u0438\u044F"@ru . "\u0622\u0646\u062A\u0631\u0648\u067E\u06CC"@fa . "\u0625\u0646\u062A\u0631\u0648\u0628\u064A\u0627"@ar . "\u090F\u0928\u094D\u091F\u094D\u0930\u0949\u092A\u0940"@hi . "\u30A8\u30F3\u30C8\u30ED\u30D4\u30FC"@ja . "\u71B5"@zh . . "The \"Equlilbrium Constant\", also known as the thermodynamic equilibrium constant, is an expression that gives us a ratio of the products and reactants of a reaction at equilibrium with respect to a specific unit."^^ . . . "http://en.wikipedia.org/wiki/Equilibrium_constant"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$K^\\Theta = \\Pi_B(\\lambda_B^\\Theta)^{-\\nu_B}$, where $\\Pi_B$ denotes the product for all substances $B$, $\\lambda_B^\\Theta$ is the standard absolute activity of substance $B$, and $\\nu_B$ is the stoichiometric number of the substance $B$."^^ . "$K^\\Theta$"^^ . "The \"Equlilbrium Constant\", also known as the thermodynamic equilibrium constant, is an expression that gives us a ratio of the products and reactants of a reaction at equilibrium with respect to a specific unit." . . "Equilibrium Constant"@en . . . . "Kc = \u03A0B(cB)\u03BDB for solutions"@en . . "Kc = \u03A0B(cB)\u03BDB f\u00FCr L\u00F6sungen"@de . "0173-1#Z4-BAJ458#001" . . "equilibrium constant based on concentration"@en-US . . "Kp = \u03A0B(pB)\u03BDB for gases"@en . . "Kp = \u03A0B(pB)\u03BDB f\u00FCr Gase"@de . "0173-1#Z4-BAJ459#001" . . "equilibrium constant based on pressure"@en-US . . "The \"Equlilbrium Constant\", also known as the thermodynamic equilibrium constant, is an expression that gives us a ratio of the products and reactants of a reaction at equilibrium with respect to a specific unit."^^ . . . "0112/2///62720#UAD048" . "http://en.wikipedia.org/wiki/Equilibrium_constant"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$K_c = \\Pi_B(c_B)^{-\\nu_B}$, for solutions"^^ . "$K_c$"^^ . "The \"Equlilbrium Constant\", also known as the thermodynamic equilibrium constant, is an expression that gives us a ratio of the products and reactants of a reaction at equilibrium with respect to a specific unit." . . . "The unit is unit:MOL-PER-M3 raised to the N where N is the summation of stoichiometric numbers. I don't know what to do with this." . . "Equilibrium Constant on Concentration Basis"@en . . . "The \"Equlilbrium Constant\", also known as the thermodynamic equilibrium constant, is an expression that gives us a ratio of the products and reactants of a reaction at equilibrium with respect to a specific unit."^^ . . . "0112/2///62720#UAD049" . "http://en.wikipedia.org/wiki/Equilibrium_constant"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$K_p = \\Pi_B(p_B)^{-\\nu_B}$, for gases"^^ . "$K_p$"^^ . "The \"Equlilbrium Constant\", also known as the thermodynamic equilibrium constant, is an expression that gives us a ratio of the products and reactants of a reaction at equilibrium with respect to a specific unit." . . . . "Equilibrium Constant on Pressure Basis"@en . . . "\"Equilibrium Position Vector of Ion\" is the position vector of a particle in equilibrium."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Position_(vector)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Equilibrium Position Vector of Ion\" is the position vector of a particle in equilibrium." . "R_0" . . "Equilibrium Position Vector of Ion"@en . . . "ratio of equivalence dose within an appropriately small interval to this interval, calculated as the differential quotient: q \u2022 D = q \u2022 \u2202D/\u2202t as a measure of the current radiation exposure"@en . . "Quotient aus der \u00C4quivalenzdosis in einer angemessenen kleinen Zeitspanne und dieser Zeitspanne, berechenbar als Differentialquotient: q \u2022 D = q \u2022 \u2202D/\u2202t als Ma\u00DF f\u00FCr die aktuelle Strahlenbelastung"@de . "0173-1#Z4-BAJ450#001" . . "equivalence dose output"@en-US . . "In a diffuse sound field, the Equivalent Absorption Area is that area of a surface having an absorption factor equal to 1, which, if diffraction effects are neglected, would, in the same diffuse sound field, absorb the same power."^^ . "m2" . . . . . . . . . . . . . . . . . . . . . . "http://www.rockfon.co.uk/acoustics/comparing+ceilings/sound+absorption/equivalent+absorption+area"^^ . "In a diffuse sound field, the Equivalent Absorption Area is that area of a surface having an absorption factor equal to 1, which, if diffraction effects are neglected, would, in the same diffuse sound field, absorb the same power." . "A" . "belongs to SOQ-ISO" . . "Equivalent absorption area"@en . . . "\"Evaporative Heat Transfer\" is "^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\Phi_e$"^^ . "\"Evaporative Heat Transfer\" is " . . "Evaporative Heat Transfer"@en . . "\"Evaporative Heat Transfer Coefficient\" is the areic heat transfer coefficient multiplied by the water vapor pressure difference between skind and the environment, and by the exchange area."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Evaporative Heat Transfer Coefficient\" is the areic heat transfer coefficient multiplied by the water vapor pressure difference between skind and the environment, and by the exchange area." . "h_e" . . "Combined Non Evaporative Heat Transfer Coefficient"@en . . "\"Exchange Integral\" is the constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions."^^ . . . . . "http://en.wikipedia.org/wiki/Exchange_interaction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Exchange Integral\" is the constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions." . "K" . . "Exchange Integral"@en . . . . "Exhaust Gas Mean Molecular Weight"@en . . "Specific heat of exhaust gases at constant pressure."^^ . . . . . . . . . . . . . . . . "Specific heat of exhaust gases at constant pressure." . "c_p" . . "Exhaust Gases Specific Heat"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "$\\rho$"^^ . . "Exhaust Stream Power"@en . . . "Cross-sectional area at exit plane of nozzle"^^ . . . . . . . . . . . . . . . . . . . . . . "Cross-sectional area at exit plane of nozzle" . "A_{e}" . . "Exit Plane Cross-sectional Area"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "p_{e}" . . "Exit Plane Pressure"@en . . . . . . . . . . "T_e" . . "Exit Plane Temperature"@en . . . . . . . . . . . . "Expansion Ratio"@en . . "\"Exposure\" reflects the extent of ionization events taking place when air is irradiated by ionizing photons (gamma radiation and/or x rays). In photography, exposure is the amount of light allowed to fall on each area unit of a photographic medium (photographic film or image sensor) during the process of taking a photograph. Exposure is measured in lux seconds, and can be computed from exposure value (EV) and scene luminance in a specified region."^^ . . . . . . . . . . . "http://dbpedia.org/resource/Exposure"^^ . . "http://en.wikipedia.org/wiki/Exposure_%28photography%29"^^ . "http://hps.org/publicinformation/ate/faqs/gammaandexposure.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "For X-or gamma radiation, $X = \\frac{dQ}{dm}$, where $dQ$ is the absolute value of the mean total electric charge of the ions of the same sign produced in dry air when all the electrons and positrons liberated or created by photons in an element of air are completely stopped in air, and $dm$ is the mass of that element."^^ . "\"Exposure\" reflects the extent of ionization events taking place when air is irradiated by ionizing photons (gamma radiation and/or x rays). In photography, exposure is the amount of light allowed to fall on each area unit of a photographic medium (photographic film or image sensor) during the process of taking a photograph. Exposure is measured in lux seconds, and can be computed from exposure value (EV) and scene luminance in a specified region." . . "X" . . "Exposure"@en . . . "measure of an electromagnetic radiation field to which a material is exposed in terms of ionization, which the radiation produces as reference material air, expressed as ratio of \u2202Q and \u2202m, where \u2202Q is the absolute value of the total charge of the ions of one sign produced in the air of mass \u2202m when all of the electrons (and positrons) liberated by photons in this mass element are completely stopped"@en . . "Ma\u00DF f\u00FCr die Wirkung eines elektromagnetischen Feldes auf Materie in Form der Ionisation, die die Strahlung im Referenzmaterial Luft erzeugt, ausgedr\u00FCckt als Quotient aus \u2202Q und \u2202m, wobei \u2202Q der Absolutwert der gesamten elektrischen Ladung der Ionen eines Vorzeichens ist, die in Luft der Masse \u2202m gebildet wird, wenn in diesem Massenelement alle Elektronen (und Positronen), die durch die Photonen freigesetzt werden, komplett gestoppt werden"@de . "0173-1#Z4-BAJ326#002" . . "exposure of ionizing radiation"@en-US . . "\"Exposure Rate\" expresses the rate of charge production per unit mass of air and is commonly expressed in roentgens per hour (R/h) or milliroentgens per hour (mR/h)."^^ . . . . "0112/2///62720#UAD050" . "http://hps.org/publicinformation/ate/faqs/gammaandexposure.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\dot{X} = \\frac{dX}{dt}$, where $X$ is the increment of exposure during time interval with duration $t$."^^ . "$\\dot{X}$"^^ . "\"Exposure Rate\" expresses the rate of charge production per unit mass of air and is commonly expressed in roentgens per hour (R/h) or milliroentgens per hour (mR/h)." . . "Exposure Rate"@en . . "ratio between the exposure of ionizing radiation dJ in a time interval and the duration dt of this interval"@en . . "Quotient Ionendosis dJ in einem Zeitintervall durch Dauer dt dieses Zeitintervalls"@de . "0173-1#Z4-BAJ327#002" . . "exposure rate of ionizing radiation"@en-US . . "In physical chemistry, the \"Extent of Reaction\" is a quantity that measures the extent in which the reaction proceeds."^^ . . . . . . . "http://en.wikipedia.org/wiki/Extent_of_reaction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$dn_B = \\nu_B d\\xi$, where $n_B$ is the amount of substance $B$ and $\\nu_B$ is the stoichiometric number of substance $B$."^^ . "$\\xi$"^^ . "In physical chemistry, the \"Extent of Reaction\" is a quantity that measures the extent in which the reaction proceeds." . . "Extent of Reaction"@en . . "A quantity of propellant, at a nominal mixture ratio, along with fuel bias that is set aside from total propellant loaded to cover for statistical variations of flight hardware characteristics and environment conditions on the day of launch. The launch vehicle is designed to accommodate the maximum FPR loading."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "A quantity of propellant, at a nominal mixture ratio, along with fuel bias that is set aside from total propellant loaded to cover for statistical variations of flight hardware characteristics and environment conditions on the day of launch. The launch vehicle is designed to accommodate the maximum FPR loading." . . "Flight Performance Reserve Propellant Mass"@en . "FPR" . . . "An additional quantity of fuel to ensure depletion of high-weight oxidizer before fuel for systems with high-oxidizer mixing ratios (e.g., 6:1). This practice allows for more efficient propellant utilization. Denoted as a percentage."^^ . . . . . . . . . . . . . "An additional quantity of fuel to ensure depletion of high-weight oxidizer before fuel for systems with high-oxidizer mixing ratios (e.g., 6:1). This practice allows for more efficient propellant utilization. Denoted as a percentage." . . "Fuel Bias"@en . . . "quantity whose zero point is defined by the temperature of a mixture of ice, water and ammonium chloride (-17.8 \u00B0C) and its fixed points on the Fahrenheit scale are 32 \u00B0F (melting point of ice) and 212 \u00B0F (boiling point of water)"@en . . "0112/2///62720#UAD263" . "Gr\u00F6\u00DFe, deren Nullpunkt durch die Mischungstemperatur von Eis, Wasser und Salmiak (Ammoniumchlorid) definiert ist (-17,8 \u00B0C) und deren Fixpunkte auf der Fahrenheit-Skala 32 \u00B0F (Schmelztemperatur von Eis) und 212 \u00B0F (Siedetemperatur des Wassers) sind"@de . "0173-1#Z4-BAJ278#002" . . "Fahrenheit temperature" . "Fahrenheit temperature"@en-US . . "limiting value - if it exists - of the ratio between the conditional probability that the fault time t of a resource will fall within a defined interval (t, t + \u0394t), and the duration of this interval if \u0394t approaches zero and the unit is in an operational state at the beginning of the interval"@en . . "0112/2///62720#UAD051" . "Grenzwert - falls er existiert - des Quotienten aus der bedingten Wahrscheinlichkeit, dass der Ausfallzeitpunkt t eines Betriebsmittels in ein gegebenes Zeitintervall (t, t + \u0394t) f\u00E4llt, und der Dauer dieses Zeitintervalls, wenn \u0394t gegen null geht und das Betriebsmittel sich zu Beginn des Zeitintervalls im betriebsf\u00E4higen Zustand befindet"@de . "0173-1#Z4-BAJ466#003" . . "failure rate" . "failure rate"@en-US . . "\"Fast Fission Factor\" in an infinite medium, is the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only."^^ . . . "http://en.wikipedia.org/wiki/Four_factor_formula"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\varphi$"^^ . "\"Fast Fission Factor\" in an infinite medium, is the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only." . . "Fast Fission Factor"@en . . . . . "http://en.wikipedia.org/wiki/Heavy_fermion"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "k_F" . . "Fermi Angular Wavenumber"@en . . . "\"Fermi Energy\" in a metal is the highest occupied energy level at zero thermodynamic temperature."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Fermi_energy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Fermi Energy\" in a metal is the highest occupied energy level at zero thermodynamic temperature." . "E_F" . . "Fermi Energy"@en . . . "\"Fermi Temperature\" is the temperature associated with the Fermi energy."^^ . . "http://en.wikipedia.org/wiki/Fermi_energy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$T_F = \\frac{E_F}{k}$, where $E_F$ is the Fermi energy and $k$ is the Boltzmann constant."^^ . "\"Fermi Temperature\" is the temperature associated with the Fermi energy." . "T_F" . . "Fermi Temperature"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "M" . . "Final Or Current Vehicle Mass"@en . . . "The first moment of area is the summation of area times distance to an axis. It is a measure of the distribution of the area of a shape in relationship to an axis."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "The first moment of area is the summation of area times distance to an axis. It is a measure of the distribution of the area of a shape in relationship to an axis." . . "First Moment of Area"@en . . . "Mass ratio for the first stage of a multistage launcher."^^ . . . . . . . . . . . . . . "Mass ratio for the first stage of a multistage launcher." . "R_1" . . "First Stage Mass Ratio"@en . . . "A time that quantifies how long its takes to transform 50% of a substance's total concentration from any concentration point in time in fish via whole body metabolic reactions."^^ . . . "A time that quantifies how long its takes to transform 50% of a substance's total concentration from any concentration point in time in fish via whole body metabolic reactions." . . "Fish Biotransformation Half Life"@en . . . . . . "R/H" . . "Fission Core Radius To Height Ratio"@en . . . . . . . . . . . . . . . "Fission Fuel Utilization Factor"@en . . . "The number of fission neutrons produced per absorption in the fuel."^^ . . . . . . . . . . . . . "The number of fission neutrons produced per absorption in the fuel." . . "Fission Multiplication Factor"@en . . . "A temperature that is the lowest one at which the vapors of a volatile material will ignite if exposed to an ignition source. It is frequently used to characterize fire hazards and distinguish different flammable fuels."^^ . . . . . . . . "A temperature that is the lowest one at which the vapors of a volatile material will ignite if exposed to an ignition source. It is frequently used to characterize fire hazards and distinguish different flammable fuels." . . "Flash Point Temperature"@en . . . "Flight path angle is defined in two different ways. To the aerodynamicist, it is the angle between the flight path vector (where the airplane is going) and the local atmosphere. To the flight crew, it is normally known as the angle between the flight path vector and the horizon, also known as the climb (or descent) angle."^^ . . . . . . . . . . . . . . "$\\gamma$"^^ . "Flight path angle is defined in two different ways. To the aerodynamicist, it is the angle between the flight path vector (where the airplane is going) and the local atmosphere. To the flight crew, it is normally known as the angle between the flight path vector and the horizon, also known as the climb (or descent) angle." . . "Flight Path Angle"@en . . . . . . . . "0112/2///62720#UAD363" . . "floating point calculation capability" . . "fluidity of a material as complement of the dynamic viscosity"@en . . . . . "0112/2///62720#UAD264" . "Flie\u00DFverm\u00F6gen eines Stoffes als Kehrwert der dynamischen Viskosit\u00E4t"@de . "0173-1#Z4-BAJ447#001" . . "fluidity" . "fluidity"@en-US . . "Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. [Wikipedia]"^^ . . . . . . "https://en.wikipedia.org/wiki/Flux"^^ . "Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. [Wikipedia]" . . "Flux"@en . . "\"Force\" is an influence that causes mass to accelerate. It may be experienced as a lift, a push, or a pull. Force is defined by Newton's Second Law as \\(F = m \\times a \\), where \\(F\\) is force, \\(m\\) is mass and \\(a\\) is acceleration. Net force is mathematically equal to the time rate of change of the momentum of the body on which it acts. Since momentum is a vector quantity (has both a magnitude and direction), force also is a vector quantity."^^ . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Force"^^ . . "0112/2///62720#UAD054" . "http://en.wikipedia.org/wiki/Force"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$F = \\frac{dp}{dt}$, where $F$ is the resultant force acting on a body, $p$ is momentum of a body, and $t$ is time."^^ . . "F" . . "Daya"@ms . "Kraft"@de . "S\u00EDla"@cs . "er\u0151"@hu . "force"@en . "force"@fr . "forza"@it . "for\u00E7a"@pt . "for\u021B\u0103"@ro . "fuerza"@es . "kuvvet"@tr . "sila"@sl . "si\u0142a"@pl . "vis"@la . "\u0394\u03CD\u03BD\u03B1\u03BC\u03B7"@el . "\u0421\u0438\u043B\u0430"@ru . "\u0441\u0438\u043B\u0430"@bg . "\u05DB\u05D5\u05D7"@he . "\u0646\u06CC\u0631\u0648"@fa . "\u0648\u062D\u062F\u0629 \u0627\u0644\u0642\u0648\u0629 \u0641\u064A \u0646\u0638\u0627\u0645 \u0645\u062A\u0631 \u0643\u064A\u0644\u0648\u063A\u0631\u0627\u0645 \u062B\u0627\u0646\u064A\u0629"@ar . "\u092C\u0932"@hi . "\u529B"@ja . "\u529B"@zh . "\u092D\u093E\u0930"@hi . . . "0112/2///62720#UAD055" . . "force constant" . . "The 'magnitude' of a force is its 'size' or 'strength', regardless of the direction in which it acts."^^ . . . . . . . . . . . . . . . . . . . . . . . . . "http://wiki.answers.com/Q/What_is_magnitude_of_force"^^ . "The 'magnitude' of a force is its 'size' or 'strength', regardless of the direction in which it acts." . "U" . . "Force Magnitude"@en . . . . . . "Force per Angle"@en . . "The force applied to a unit area of surface; measured in pascals (SI unit) or in dynes (cgs unit)"^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Pressure"^^ . "http://www.thefreedictionary.com/force+per+unit+area"^^ . "The force applied to a unit area of surface; measured in pascals (SI unit) or in dynes (cgs unit)" . "p" . . "Force Per Area"@en . . . . . . . . . . . . "Force Per Area Time"@en . . "The electric field depicts the force exerted on other electrically charged objects by the electrically charged particle the field is surrounding. The electric field is a vector field with SI units of newtons per coulomb ($N C^{-1}$) or, equivalently, volts per metre ($V m^{-1}$ ). The SI base units of the electric field are $kg m s^{-3} A^{-1}$. The strength or magnitude of the field at a given point is defined as the force that would be exerted on a positive test charge of 1 coulomb placed at that point"^^ . . . "http://en.wikipedia.org/wiki/Electric_field"^^ . . "Force per Electric Charge"@en . . . . . . . . . . . . . . . . . . . . . . . . "Force per Length"@en . . "\"Frequency\" is the number of occurrences of a repeating event per unit time. The repetition of the events may be periodic (that is. the length of time between event repetitions is fixed) or aperiodic (i.e. the length of time between event repetitions varies). Therefore, we distinguish between periodic and aperiodic frequencies. In the SI system, periodic frequency is measured in hertz (Hz) or multiples of hertz, while aperiodic frequency is measured in becquerel (Bq). In spectroscopy, \\(\\nu\\) is mostly used. Light passing through different media keeps its frequency, but not its wavelength or wavenumber."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Frequency"^^ . . "0112/2///62720#UAD056" . "$f = 1/T$, where $T$ is a period.\n\nAlternatively,\n\n$\\nu = 1/T$"^^ . "$\\nu, f$"^^ . . . "Frekuensi"@ms . "Frekvence"@cs . "Frequenz"@de . "cz\u0119stotliwo\u015B\u0107"@pl . "frecuencia"@es . "frecven\u021B\u0103"@ro . "frekans"@tr . "frekvenca"@sl . "frekvencia"@hu . "frequency"@en . "frequentia"@la . "frequenza"@it . "frequ\u00EAncia"@pt . "fr\u00E9quence"@fr . "\u03A3\u03C5\u03C7\u03BD\u03CC\u03C4\u03B7\u03C4\u03B1"@el . "\u0427\u0430\u0441\u0442\u043E\u0442\u0430"@ru . "\u0427\u0435\u0441\u0442\u043E\u0442\u0430"@bg . "\u05EA\u05D3\u05D9\u05E8\u05D5\u05EA"@he . "\u0627\u0644\u062A\u0631\u062F\u062F \u0644\u062F\u0649 \u0646\u0638\u0627\u0645 \u0627\u0644\u0648\u062D\u062F\u0627\u062A \u0627\u0644\u062F\u0648\u0644\u064A"@ar . "\u0628\u0633\u0627\u0645\u062F"@fa . "\u0906\u0935\u0943\u0924\u094D\u0924\u093F"@hi . "\u5468\u6CE2\u6570"@ja . "\u9891\u7387"@zh . . . "\"Friction\" is the force of two surfaces In contact, or the force of a medium acting on a moving object (that is air on an aircraft). When contacting surfaces move relative to each other, the friction between the two objects converts kinetic energy into thermal energy."^^ . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Friction"^^ . . "http://en.wikipedia.org/wiki/Friction"^^ . "http://wiki.answers.com/Q/What_is_the_symbol_of_friction"^^ . "\"Friction\" is the force of two surfaces In contact, or the force of a medium acting on a moving object (that is air on an aircraft). When contacting surfaces move relative to each other, the friction between the two objects converts kinetic energy into thermal energy." . . "Friction"@en . . . "\"Friction Coefficient\" is the ratio of the force of friction between two bodies and the force pressing them together"^^ . . . "http://dbpedia.org/resource/Friction"^^ . . "http://en.wikipedia.org/wiki/Friction"^^ . "http://wiki.answers.com/Q/What_is_the_symbol_of_friction"^^ . "$\\mu$"^^ . "\"Friction Coefficient\" is the ratio of the force of friction between two bodies and the force pressing them together" . . . . "Friction Coefficient"@en . . . "\"Fugacity\" of a real gas is an effective pressure which replaces the true mechanical pressure in accurate chemical equilibrium calculations. It is equal to the pressure of an ideal gas which has the same chemical potential as the real gas."^^ . . . . "http://en.wikipedia.org/wiki/Fugacity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\tilde{p}_B$"^^ . "\"Fugacity\" of a real gas is an effective pressure which replaces the true mechanical pressure in accurate chemical equilibrium calculations. It is equal to the pressure of an ideal gas which has the same chemical potential as the real gas." . . "Fugasiti"@ms . "Fugazit\u00E4t"@de . "Lotno\u015B\u0107"@pl . "fugacidad"@es . "fugacidade"@pt . "fugacita"@cs . "fugacitate"@ro . "fugacity"@en . "fugacit\u00E0"@it . "fugacit\u00E9"@fr . "f\u00FCgasite"@tr . "\u0627\u0646\u0641\u0644\u0627\u062A\u064A\u0629"@ar . "\u0628\u06CC\u200C\u062F\u0648\u0627\u0645\u06CC"@fa . "\u30D5\u30AC\u30B7\u30C6\u30A3\u30FC"@ja . "\u9038\u5EA6"@zh . . "\"Fundamental Lattice vector\" are fundamental translation vectors for the crystal lattice."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.matter.org.uk/diffraction/geometry/lattice_vectors.htm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Fundamental Lattice vector\" are fundamental translation vectors for the crystal lattice." . "a_1, a_2, a_3" . . "Fundamental Lattice vector"@en . . . "\"Fundamental Reciprocal Lattice Vector\" are fundamental, or primary, translation vectors the reciprocal lattice."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Reciprocal_lattice"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Fundamental Reciprocal Lattice Vector\" are fundamental, or primary, translation vectors the reciprocal lattice." . "b_1, b_2, b_3" . . "Fundamental Reciprocal Lattice Vector"@en . . . "The \"g-Factor of Nucleus\" is associated with the spin and magnetic moments of protons, neutrons, and many nuclei."^^ . . . "http://en.wikipedia.org/wiki/Land\u00E9_g-factor"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$g = \\frac{\\mu}{I\\mu_B}$, where $\\mu$ is the magnitude of magnetic dipole moment, $I$ is the nuclear angular momentum quantum number, and $\\mu_B$ is the Bohr magneton."^^ . "The \"g-Factor of Nucleus\" is associated with the spin and magnetic moments of protons, neutrons, and many nuclei." . "g" . . "g-Factor of Nucleus"@en . . "The sum of a rocket's inert mass and usable fluids and gases at sea level."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Maximum_Takeoff_Weight"^^ . "The sum of a rocket's inert mass and usable fluids and gases at sea level." . . "Gross Lift-Off Weight"@en . . . "A general term used to denote an increase in signal power or signal strength in transmission from one point to another. Gain is usually expressed in decibels and is widely used to denote transducer gain. An increase or amplification. In radar there are two general usages of the term: (a) antenna gain, or gain factor, is the ratio of the power transmitted along the beam axis to that of an isotropic radiator transmitting the same total power; (b) receiver gain, or video gain, is the amplification given a signal by the receiver."^^ . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Gain"^^ . . "A general term used to denote an increase in signal power or signal strength in transmission from one point to another. Gain is usually expressed in decibels and is widely used to denote transducer gain. An increase or amplification. In radar there are two general usages of the term: (a) antenna gain, or gain factor, is the ratio of the power transmitted along the beam axis to that of an isotropic radiator transmitting the same total power; (b) receiver gain, or video gain, is the amplification given a signal by the receiver." . . . . "Gain"@en . . . "\"Gap Energy\" is the difference in energy between the lowest level of conduction band and the highest level of valence band. It is an energy range in a solid where no electron states can exist."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Band_gap"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Gap Energy\" is the difference in energy between the lowest level of conduction band and the highest level of valence band. It is an energy range in a solid where no electron states can exist." . "E_g" . . "Gap Energy"@en . . . "ratio of the pV value of a gas (product of pressure and volume of a given quantity of gas at the respective temperature) flowing through a pipe cross-section during a time interval and the related interval"@en . . "0112/2///62720#UAD057" . "Quotient aus dem pV-Wert eines Gases (Produkt aus Druck und Volumen einer bestimmten Menge eines Gases bei der jeweils herrschenden Temperatur), das w\u00E4hrend einer Zeitspanne durch einen Leitungsquerschnitt str\u00F6mt, und der zugeh\u00F6rigen Zeitspanne"@de . "0173-1#Z4-BAJ324#002" . . "gas leak rate" . "gas leak rate"@en-US . . "The abundance of each gene family in the community. Gene families are groups of evolutionarily-related protein-coding sequences that often perform similar functions. Gene family abundance is reported in RPK (reads per kilobase) units to normalize for gene length."^^ . . . "https://learn.gencore.bio.nyu.edu/"^^ . "The abundance of each gene family in the community. Gene families are groups of evolutionarily-related protein-coding sequences that often perform similar functions. Gene family abundance is reported in RPK (reads per kilobase) units to normalize for gene length." . . . . "Gene Family Abundance"@en . . . "Generalized Coordinates refers to the parameters that describe the configuration of the system relative to some reference configuration. These parameters must uniquely define the configuration of the system relative to the reference configuration."^^ . . . "http://en.wikipedia.org/wiki/Generalized_coordinates"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$q_i$, where $q_i$ is one of the coordinates that is used to describe the position of the system under consideration, and $N$ is the lowest number of coordinates necessary to fully define the position of the system."^^ . "Generalized Coordinates refers to the parameters that describe the configuration of the system relative to some reference configuration. These parameters must uniquely define the configuration of the system relative to the reference configuration." . "q_i" . . "Generalized Coordinate"@en . . "Generalized Forces find use in Lagrangian mechanics, where they play a role conjugate to generalized coordinates."^^ . . . "http://en.wikipedia.org/wiki/Generalized_forces"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\delta A = \\sum Q_i\\delta q_i$, where $A$ is work and $q_i$ is a generalized coordinate."^^ . "Generalized Forces find use in Lagrangian mechanics, where they play a role conjugate to generalized coordinates." . "Q_i" . . "Generalized Force"@en . . "Generalized Momentum, also known as the canonical or conjugate momentum, extends the concepts of both linear momentum and angular momentum. To distinguish it from generalized momentum, the product of mass and velocity is also referred to as mechanical, kinetic or kinematic momentum."^^ . . . "http://en.wikipedia.org/wiki/Momentum"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$p_i = \\frac{\\partial L}{\\partial \\dot{q_i}}$, where $L$ is the Langrange function and $\\dot{q_i}$ is a generalized velocity."^^ . "Generalized Momentum, also known as the canonical or conjugate momentum, extends the concepts of both linear momentum and angular momentum. To distinguish it from generalized momentum, the product of mass and velocity is also referred to as mechanical, kinetic or kinematic momentum." . "p_i" . . "Generalized Force"@en . . "Generalized Velocities are the time derivatives of the generalized coordinates of the system."^^ . . . "http://en.wikipedia.org/wiki/Generalized_coordinates"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\dot{q_i} = \\frac{dq_i}{dt}$, where $q_i$ is the generalized coordinate and $t$ is time."^^ . "$\\dot{q_i}$"^^ . "Generalized Velocities are the time derivatives of the generalized coordinates of the system." . . "Generalized Velocity"@en . . "\"Gibbs Energy} is one of the potentials are used to measure energy changes in systems as they evolve from an initial state to a final state. The potential used depends on the constraints of the system, such as constant temperature or pressure. \\textit{Internal Energy} is the internal energy of the system, \\textit{Enthalpy} is the internal energy of the system plus the energy related to pressure-volume work, and Helmholtz and Gibbs free energy are the energies available in a system to do useful work when the temperature and volume or the pressure and temperature are fixed, respectively. The name \\textit{Gibbs Free Energy\" is also used."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.citizendium.org/wiki/Thermodynamics"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$G = H - T \\cdot S$, where $H$ is enthalpy, $T$ is thermodynamic temperature and $S$ is entropy."^^ . "\"Gibbs Energy} is one of the potentials are used to measure energy changes in systems as they evolve from an initial state to a final state. The potential used depends on the constraints of the system, such as constant temperature or pressure. \\textit{Internal Energy} is the internal energy of the system, \\textit{Enthalpy} is the internal energy of the system plus the energy related to pressure-volume work, and Helmholtz and Gibbs free energy are the energies available in a system to do useful work when the temperature and volume or the pressure and temperature are fixed, respectively. The name \\textit{Gibbs Free Energy\" is also used." . "G" . . "Energ\u00EDa de Gibbs"@es . "Entalpie liber\u0103"@ro . "Gibbs Serbest Enerjisi"@tr . "Gibbs energy"@en . "Gibbsova voln\u00E1 energie"@cs . "Prosta entalpija"@sl . "Tenaga Gibbs"@ms . "energia libera di Gibbs"@it . "energia livre de Gibbs"@pt . "entalpia swobodna"@pl . "enthalpie libre"@fr . "freie Enthalpie"@de . "\u044D\u043D\u0435\u0440\u0433\u0438\u044F \u0413\u0438\u0431\u0431\u0441\u0430"@ru . "\u0627\u0646\u0631\u0698\u06CC \u0622\u0632\u0627\u062F \u06AF\u06CC\u0628\u0633"@fa . "\u0637\u0627\u0642\u0629 \u063A\u064A\u0628\u0633 \u0627\u0644\u062D\u0631\u0629"@ar . "\u30AE\u30D6\u30BA\u30A8\u30CD\u30EB\u30AE\u30FC"@ja . "\u5409\u5E03\u65AF\u81EA\u7531\u80FD"@zh . . . . . "Gibbs function"@en . "Gibbs-Energie"@de . "Gibbs-Funktion"@de . "fungsi Gibbs"@ms . . . . . . "0112/2///62720#UAD058" . . "gradient" . . "An \"Grand Canonical Partition Function\" for a grand canonical ensemble, a system that can exchange both heat and particles with the environment, which has a constant temperature and a chemical potential."^^ . . . "http://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\Xi = \\sum_{N_A, N_B, ...} Z(N_A, N_B, ...) \\cdot \\lambda_A^{N_A} \\cdot \\lambda_B^{N_B} \\cdot ...$, where $Z(N_A, N_B, ...)$ is the canonical partition function for the given number of particles $A, B, ...,$, and $\\lambda_A, \\lambda_B, ...$ are the absolute activities of particles $A, B, ...$."^^ . "$\\Xi$"^^ . "An \"Grand Canonical Partition Function\" for a grand canonical ensemble, a system that can exchange both heat and particles with the environment, which has a constant temperature and a chemical potential." . . "Grand Canonical Partition Function"@en . . . "The force of attraction between all masses in the universe; especially the attraction of the earth's mass for bodies near its surface; the more remote the body the less the gravity; the gravitation between two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them."^^ . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.thefreedictionary.com/gravitational+attraction"^^ . "The force of attraction between all masses in the universe; especially the attraction of the earth's mass for bodies near its surface; the more remote the body the less the gravity; the gravitation between two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them." . "G" . . "Gravitational Attraction"@en . . . "The American Petroleum Institute gravity, or API gravity, is a measure of how heavy or light a petroleum liquid is compared to water: if its API gravity is greater than 10, it is lighter and floats on water; if less than 10, it is heavier and sinks.\n\nAPI gravity is thus an inverse measure of a petroleum liquid's density relative to that of water (also known as specific gravity). It is used to compare densities of petroleum liquids. For example, if one petroleum liquid is less dense than another, it has a greater API gravity. Although API gravity is mathematically a dimensionless quantity (see the formula below), it is referred to as being in 'degrees'. API gravity is graduated in degrees on a hydrometer instrument. API gravity values of most petroleum liquids fall between 10 and 70 degrees." . . "$qkdv:A0E0L0I0M0H0T0D1$"^^ . . "https://en.wikipedia.org/wiki/API_gravity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "The American Petroleum Institute gravity, or API gravity, is a measure of how heavy or light a petroleum liquid is compared to water: if its API gravity is greater than 10, it is lighter and floats on water; if less than 10, it is heavier and sinks.\n\nAPI gravity is thus an inverse measure of a petroleum liquid's density relative to that of water (also known as specific gravity). It is used to compare densities of petroleum liquids. For example, if one petroleum liquid is less dense than another, it has a greater API gravity. Although API gravity is mathematically a dimensionless quantity (see the formula below), it is referred to as being in 'degrees'. API gravity is graduated in degrees on a hydrometer instrument. API gravity values of most petroleum liquids fall between 10 and 70 degrees." . . . . "API Gravity"@en . . . "In a dispersive medium sound speed is a function of sound frequency, through the dispersion relation. The spatial and temporal distribution of a propagating disturbance will continually change. The group speed of sound describes the propagation of the disturbance."^^ . . . . "http://en.wikipedia.org/wiki/Speed_of_sound"^^ . "$c_g = \\frac{d\\omega}{dk}$, where $\\omega$ is the angular frequency and $k$ is angular wavenumber."^^ . "In a dispersive medium sound speed is a function of sound frequency, through the dispersion relation. The spatial and temporal distribution of a propagating disturbance will continually change. The group speed of sound describes the propagation of the disturbance." . "c" . "belongs to SOQ-ISO" . . "Group Speed of Sound"@en . . . "The sum of excess temperature over 5.5\u00B0C, where the temperature is the mean of the minimum and maximum atmospheric temperature in a day. This measure is appropriate for most cereal crops."^^ . . . "The sum of excess temperature over 5.5\u00B0C, where the temperature is the mean of the minimum and maximum atmospheric temperature in a day. This measure is appropriate for most cereal crops." . . "Growing Degree Days (Cereals)"@en . . . "\"Gruneisen Parameter\" named after Eduard Gr\u00FCneisen, describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice."^^ . . . "http://en.wikipedia.org/wiki/Gr\u00FCneisen_parameter"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$\\gamma = \\frac{\\alpha_V}{x_T c_V\\rho}$, where $\\alpha_V$ is the cubic expansion coefficient, $x_T$ is isothermal compressibility, $c_V$ is specific heat capacity at constant volume, and $\\rho$ is mass density."^^ . "$\\gamma$"^^ . "\"Gruneisen Parameter\" named after Eduard Gr\u00FCneisen, describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice." . . "Gruneisen Parameter"@en . . "\"Gustatory Threshold\" are thresholds for classes of taste that can be detected by the human mouth and thresholds of sensitivity to foods, drinks and other substances."^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\overline{T_g}$"^^ . "\"Gustatory Threshold\" are thresholds for classes of taste that can be detected by the human mouth and thresholds of sensitivity to foods, drinks and other substances." . . "Gustatory Threshold"@en . . "\"Gyromagnetic Ratio}, also sometimes known as the magnetogyric ratio in other disciplines, of a particle or system is the ratio of its magnetic dipole moment to its angular momentum, and it is often denoted by the symbol, $\\gamma$. Its SI units are radian per second per tesla ($rad s^{-1} \\cdot T^{1}$) or, equivalently, coulomb per kilogram ($C \\cdot kg^{-1\"$)."^^ . "http://dbpedia.org/resource/Gyromagnetic_ratio"^^ . . "http://en.wikipedia.org/wiki/Gyromagnetic_ratio"^^ . "$\\mu = \\gamma J$, where $\\mu$ is the magnetic dipole moment, and $J$ is the total angular momentum."^^ . "$\\gamma$"^^ . . "Gyromagnetic Ratio"@en . . "The \"Half-Life\" is the average duration required for the decay of one half of the atoms or nuclei."^^ . . "http://en.wikipedia.org/wiki/Half-life"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Half-Life\" is the average duration required for the decay of one half of the atoms or nuclei." . "T_{1/2}" . . "Halbwertszeit"@de . "Polo\u010Das rozpadu"@cs . "Separuh hayat"@ms . "half-life"@en . "meia-vida"@pt . "semiperiodo"@es . "tempo di dimezzamento"@it . "temps de demi-vie"@fr . "yar\u0131lanma s\u00FCresi"@tr . "\u0646\u06CC\u0645\u0647 \u0639\u0645\u0631"@fa . "\u534A\u8870\u671F"@zh . "semivita"@it . . "The \"Half-Value Thickness\" is the thickness of the material at which the intensity of radiation entering it is reduced by one half."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Half-value_layer"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Half-Value Thickness\" is the thickness of the material at which the intensity of radiation entering it is reduced by one half." . "d_{1/2}" . . "Half-Value Thickness"@en . . . "\"Hall Coefficient\" is defined as the ratio of the induced electric field to the product of the current density and the applied magnetic field."^^ . . . . . . "0112/2///62720#UAD060" . "http://en.wikipedia.org/wiki/Hall_effect"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "In an isotropic conductor, the relation between electric field strength, $E$, and electric current density, $J$ is $E = \\rho J + R_H(B X J)$, where $\\rho$ is resistivity, and $B$ is magnetic flux density."^^ . "\"Hall Coefficient\" is defined as the ratio of the induced electric field to the product of the current density and the applied magnetic field." . "R_H, A_H" . . "Hall Coefficient"@en . . "The Hamilton\u2013Jacobi equation (HJE) is a necessary condition describing extremal geometry in generalizations of problems from the calculus of variations."^^ . . . . . "http://en.wikipedia.org/wiki/Hamilton\u2013Jacobi_equation"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$H = \\sum p_i\\dot{q_i} - L$, where $p_i$ is a generalized momentum, $\\dot{q_i}$ is a generalized velocity, and $L$ is the Lagrange function."^^ . "The Hamilton\u2013Jacobi equation (HJE) is a necessary condition describing extremal geometry in generalizations of problems from the calculus of variations." . "H" . . "Hamilton Function"@en . . "HEP" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Head End Pressure"@en . . . "The number of heartbeats per unit of time, usually per minute. The heart rate is based on the number of contractions of the ventricles (the lower chambers of the heart). The heart rate may be too fast (tachycardia) or too slow (bradycardia). The average adult pulse rate at rest is 60\u201380 per minute, but exercise, injury, illness, and emotion may produce much faster rates."^^ . . "http://dbpedia.org/resource/Heart_rate"^^ . . "http://www.medterms.com/script/main/art.asp?articlekey=3674"^^ . "http://www.oxfordreference.com/view/10.1093/oi/authority.20110803100354463"^^ . "The number of heartbeats per unit of time, usually per minute. The heart rate is based on the number of contractions of the ventricles (the lower chambers of the heart). The heart rate may be too fast (tachycardia) or too slow (bradycardia). The average adult pulse rate at rest is 60\u201380 per minute, but exercise, injury, illness, and emotion may produce much faster rates." . . "Heart Rate"@en . . "\"Heat\" is the energy transferred by a thermal process. Heat can be measured in terms of the dynamical units of energy, as the erg, joule, etc., or in terms of the amount of energy required to produce a definite thermal change in some substance, as, for example, the energy required per degree to raise the temperature of a unit mass of water at some temperature ( calorie, Btu)."^^ . "heat" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Heat"^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "\"Heat\" is the energy transferred by a thermal process. Heat can be measured in terms of the dynamical units of energy, as the erg, joule, etc., or in terms of the amount of energy required to produce a definite thermal change in some substance, as, for example, the energy required per degree to raise the temperature of a unit mass of water at some temperature ( calorie, Btu)." . "Q" . . "W\u00E4rme"@de . "calor"@es . "calore"@it . "cantitate de c\u0103ldur\u0103"@ro . "ciep\u0142o"@pl . "heat"@en . "jednotka tepla"@cs . "kuantiti haba Haba"@ms . "labor"@la . "quantidade de calor"@pt . "quantit\u00E9 de chaleur"@fr . "toplota"@sl . "\u0131s\u0131 miktar\u0131"@tr . "\u0422\u0435\u043F\u043B\u043E\u0442\u0430"@ru . "\u062D\u0631\u0627\u0631\u0629"@ar . "\u06A9\u0645\u06CC\u062A \u06AF\u0631\u0645\u0627"@fa . "\u090A\u0937\u094D\u092E\u093E"@hi . "\u70ED\u91CF"@zh . "\u71B1\u91CF"@ja . "W\u00E4rmemenge"@de . "amount of heat"@en . "chaleur"@fr . "jumlah haba"@ms . "quantit\u00E0 di calore"@it . . . "\"Heat Capacity\" (usually denoted by a capital \\(C\\), often with subscripts), or thermal capacity, is the measurable physical quantity that characterizes the amount of heat required to change a substance's temperature by a given amount. In the International System of Units (SI), heat capacity is expressed in units of joule(s) (J) per kelvin (K)."^^ . . . . . . . "http://en.wikipedia.org/wiki/Heat_capacity"^^ . "$C = dQ/dT$, where $Q$ is amount of heat and $T$ is thermodynamic temperature."^^ . . "C_P" . . "W\u00E4rmekapazit\u00E4t"@de . "capacidad calor\u00EDfica"@es . "capacidade t\u00E9rmica"@pt . "capacitate termic\u0103"@ro . "capacit\u00E0 termica"@it . "capacit\u00E9 thermique"@fr . "heat capacity"@en . "is\u0131 kapasitesi"@tr . "muatan haba"@ms . "pojemno\u015B\u0107 cieplna"@pl . "tepeln\u00E1 kapacita"@cs . "toplotna kapaciteta"@sl . "\u0442\u0435\u043F\u043B\u043E\u0451\u043C\u043A\u043E\u0441\u0442\u044C"@ru . "\u0633\u0639\u0629 \u062D\u0631\u0627\u0631\u064A\u0629"@ar . "\u0638\u0631\u0641\u06CC\u062A \u06AF\u0631\u0645\u0627\u06CC\u06CC"@fa . "\u090A\u0937\u094D\u092E\u093E \u0927\u093E\u0930\u093F\u0924\u093E"@hi . "\u70ED\u5BB9"@zh . "\u71B1\u5BB9\u91CF"@ja . . . "The heat capacity ratio, or ratio of specific heats, is the ratio of the heat capacity at constant pressure ($C_P$) to heat capacity at constant volume ($C_V$). For an ideal gas, the heat capacity is constant with temperature ($\\theta$). Accordingly we can express the enthalpy as $H = C_P*\\theta$ and the internal energy as $U = C_V \\cdot \\theta$. Thus, it can also be said that the heat capacity ratio is the ratio between enthalpy and internal energy."^^ . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Heat_capacity_ratio"^^ . . "http://en.wikipedia.org/wiki/Heat_capacity_ratio"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . . . . "Heat Capacity Ratio"@en . . . "The rate of heat flow between two systems is measured in watts (joules per second). The formula for rate of heat flow is $\\bigtriangleup Q / \\bigtriangleup t = -K \\times A \\times \\bigtriangleup T/x$, where $\\bigtriangleup Q / \\bigtriangleup t$ is the rate of heat flow; $-K$ is the thermal conductivity factor; A is the surface area; $\\bigtriangleup T$ is the change in temperature and $x$ is the thickness of the material. $\\bigtriangleup T/ x$ is called the temperature gradient and is always negative because of the heat of flow always goes from more thermal energy to less)."^^ . . . . . . . . . . . . . . . . . . . "$heat-flow-rate$"^^ . . "http://en.wikipedia.org/wiki/Rate_of_heat_flow"^^ . "$\\Phi$"^^ . . "Heat Flow Rate"@en . . . "$\\textit{Heat Flux}$ is the heat rate per unit area. In SI units, heat flux is measured in $W/m^2$. Heat rate is a scalar quantity, while heat flux is a vectorial quantity. To define the heat flux at a certain point in space, one takes the limiting case where the size of the surface becomes infinitesimally small."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Heat_flux"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . . "Heat Flow Rate per Unit Area"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Heat Flux Density"@en . . . "The heating value (or energy value or calorific value) of a substance, usually a fuel or food (see food energy), is the amount of heat released during the combustion of a specified amount of it. "^^ . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Specific_energy"^^ . . "https://en.wikipedia.org/wiki/Heat_of_combustion"^^ . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/link/ifcheatingvaluemeasure.htm"^^ . "The heating value (or energy value or calorific value) of a substance, usually a fuel or food (see food energy), is the amount of heat released during the combustion of a specified amount of it. " . . "Calorific Value"@en . "Energy Value"@en . "Heating Value"@en . . . "\"Height\" is the measurement of vertical distance, but has two meanings in common use. It can either indicate how \"tall\" something is, or how \"high up\" it is."^^ . "height" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Height"^^ . . "http://en.wikipedia.org/wiki/Height"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Height\" is the measurement of vertical distance, but has two meanings in common use. It can either indicate how \"tall\" something is, or how \"high up\" it is." . "h" . . "H\u00F6he"@de . "Ketinggian"@ms . "V\u00FD\u0161ka"@cs . "altezza"@it . "altura"@es . "altura"@pt . "hauteur"@fr . "height"@en . "y\u00FCkseklik"@tr . "\u00CEn\u0103l\u021Bime"@ro . "\u0432\u044B\u0441\u043E\u0442\u0430"@ru . "\u0627\u0631\u062A\u0641\u0627\u0639"@fa . "\u9AD8\u5EA6"@zh . . . "$\\textit{Helmholtz Energy}$ is one of the potentials are used to measure energy changes in systems as they evolve from an initial state to a final state. The potential used depends on the constraints of the system, such as constant temperature or pressure. $\\textit{Internal Energy}$ is the internal energy of the system, $\\textit{Enthalpy}$ is the internal energy of the system plus the energy related to pressure-volume work, and Helmholtz and Gibbs free energy are the energies available in a system to do useful work when the temperature and volume or the pressure and temperature are fixed, respectively. The name $\\textit{Helmholz Free Energy}$ is also used."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.citizendium.org/wiki/Thermodynamics"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$H = U - T \\cdot S$, where $U$ is internal energy, $T$ is thermodynamic temperature and $S$ is entropy."^^ . "A" . . "Energ\u00EDa de Helmholtz"@es . "Helmholtz energy"@en . "Helmholtz enerjisi"@tr . "Helmholtzova voln\u00E1 energie"@cs . "Prosta energija"@sl . "Tenaga Helmholtz"@ms . "energia libera di Helmholz"@it . "energia livre de Helmholtz"@pt . "energia swobodna"@pl . "freie Energie"@de . "\u00E9nergie libre"@fr . "\u0441\u0432\u043E\u0431\u043E\u0434\u043D\u0430\u044F \u044D\u043D\u0435\u0440\u0433\u0438\u044F \u0413\u0435\u043B\u044C\u043C\u0433\u043E\u043B\u044C\u0446\u0430"@ru . "\u0627\u0646\u0631\u0698\u06CC \u0622\u0632\u0627\u062F \u0647\u0644\u0645\u0648\u0644\u062A\u0632"@fa . "\u0637\u0627\u0642\u0629 \u0647\u0644\u0645\u0647\u0648\u0644\u062A\u0632 \u0627\u0644\u062D\u0631\u0629"@ar . "\u30D8\u30EB\u30E0\u30DB\u30EB\u30C4\u306E\u81EA\u7531\u30A8\u30CD\u30EB\u30AE\u30FC"@ja . "\u4EA5\u59C6\u970D\u5179\u81EA\u7531\u80FD"@zh . . . . . " Helmholtz fonksiyonu"@tr . "Helmholtz function"@en . "Helmholtz-Energie"@de . "Helmholtz-Funktion"@de . "fungsi Helmholtz"@ms . . . "A quantity kind that is a proportionality constant that relates the partial pressure of a gas above a liquid and the concentration of the gas dissolved in the liquid. The numerator contains the gaseous concentration and the denominator contains the liquid concentration."^^ . . . "A quantity kind that is a proportionality constant that relates the partial pressure of a gas above a liquid and the concentration of the gas dissolved in the liquid. The numerator contains the gaseous concentration and the denominator contains the liquid concentration." . . "Henry's Law Volatility Constant"@en . . "\"Hole Density\" is the number of holes per volume in a valence band."^^ . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Hole Density\" is the number of holes per volume in a valence band." . "p" . . "Hole Density"@en . . . "Component of a projectile's velocity, which acts parallel to the ground and does not lift the projectile in the air."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Component of a projectile's velocity, which acts parallel to the ground and does not lift the projectile in the air." . "V_{X}" . . "Horizontal Velocity"@en . . . "Permeability is a property of porous materials that is an indication of the ability for fluids (gas or liquid) to flow through them. Fluids can more easily flow through a material with high permeability than one with low permeability. The permeability of a medium is related to the porosity, but also to the shapes of the pores in the medium and their level of connectedness."^^ . . . . . . . . . . . . . "$cm^2$"^^ . "$m^2$"^^ . "http://dbpedia.org/resource/Permeability_(Earth_sciences)"^^ . . "https://en.wikipedia.org/wiki/Permeability_(Earth_sciences)"^^ . "Permeability is a property of porous materials that is an indication of the ability for fluids (gas or liquid) to flow through them. Fluids can more easily flow through a material with high permeability than one with low permeability. The permeability of a medium is related to the porosity, but also to the shapes of the pores in the medium and their level of connectedness." . . "Hydraulic Permeability"@en . "Fluid Permeability"@en . "Permeability"@en . . "The \"Hyperfine Structure Quantum Number\" is a quantum number of an atom describing inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons."^^ . . . "http://en.wikipedia.org/wiki/Hyperfine_structure"^^ . "http://en.wikipedia.org/wiki/Quantum_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "The \"Hyperfine Structure Quantum Number\" is a quantum number of an atom describing inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons." . "F" . . "Hyperfine Structure Quantum Number"@en . . . "The sum of the vehicle dry mass, residual fluids and gasses, personnel and personnel provisions, and cargo."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "The sum of the vehicle dry mass, residual fluids and gasses, personnel and personnel provisions, and cargo." . . "Inert Mass"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Ignition interval time"@en . . . "Illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of the intensity of the incident light, wavelength-weighted by the luminosity function to correlate with human brightness perception."^^ . . . . "http://dbpedia.org/resource/Illuminance"^^ . . "0112/2///62720#UAD062" . "http://en.wikipedia.org/wiki/Illuminance"^^ . "$E_v = \\frac{d\\Phi}{dA}$, where $d\\Phi$ is the luminous flux incident on an element of the surface with area $dA$."^^ . "Illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of the intensity of the incident light, wavelength-weighted by the luminosity function to correlate with human brightness perception." . . . "Beleuchtungsst\u00E4rke"@de . "Intenzita osv\u011Btlen\u00ED"@cs . "Pencahayaan"@ms . "ayd\u0131nlanma \u015Fiddeti"@tr . "illuminamento"@it . "illuminance"@en . "iluminamento"@pt . "iluminare"@ro . "luminosidad"@es . "megvil\u00E1g\u00EDt\u00E1s"@hu . "nat\u0119\u017Cenie o\u015Bwietlenia"@pl . "osvetljenost"@sl . "\u00E9clairement lumineux"@fr . "\u041E\u0441\u0432\u0435\u0442\u0435\u043D\u043E\u0441\u0442"@bg . "\u041E\u0441\u0432\u0435\u0449\u0451\u043D\u043D\u043E\u0441\u0442\u044C"@ru . "\u05D4\u05D0\u05E8\u05D4 (\u05E9\u05D8\u05E3 \u05DC\u05D9\u05D7\u05D9\u05D3\u05EA \u05E9\u05D8\u05D7)"@he . "\u0634\u062F\u0629 \u0627\u0644\u0636\u0648\u0621"@ar . "\u0634\u062F\u062A \u0631\u0648\u0634\u0646\u0627\u06CC\u06CC"@fa . "\u092A\u094D\u0930\u0926\u0940\u092A\u0928"@hi . "\u7167\u5EA6"@ja . "\u7167\u5EA6"@zh . "\u00E9clairement"@fr . . . "\"Impedance\" is the measure of the opposition that a circuit presents to the passage of a current when a voltage is applied. In quantitative terms, it is the complex ratio of the voltage to the current in an alternating current (AC) circuit. Impedance extends the concept of resistance to AC circuits, and possesses both magnitude and phase, unlike resistance, which has only magnitude. When a circuit is driven with direct current (DC), there is no distinction between impedance and resistance; the latter can be thought of as impedance with zero phase angle."^^ . . "http://dbpedia.org/resource/Electrical_impedance"^^ . . "http://en.wikipedia.org/wiki/Electrical_impedance"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-43"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\underline{Z} = \\underline{U} / \\underline{I}$, where $\\underline{U}$ is the voltage phasor and $\\underline{I}$ is the electric current phasor."^^ . "$\\underline{Z}$"^^ . "\"Impedance\" is the measure of the opposition that a circuit presents to the passage of a current when a voltage is applied. In quantitative terms, it is the complex ratio of the voltage to the current in an alternating current (AC) circuit. Impedance extends the concept of resistance to AC circuits, and possesses both magnitude and phase, unlike resistance, which has only magnitude. When a circuit is driven with direct current (DC), there is no distinction between impedance and resistance; the latter can be thought of as impedance with zero phase angle." . . "Impedance"@en . . . . "product of force and time"@en . . . . . . "0112/2///62720#UAD063" . "Produkt aus Kraft und Zeit"@de . "0173-1#Z4-BAJ241#002" . "0173-1#Z4-BAJ262#002" . . "impulse" . "impulse"@en-US . . "In epidemiology, incidence is a measure of the probability of occurrence of a given medical condition in a population within a specified period of time."^^ . . . "0112/2///62720#UAD064" . "https://en.wikipedia.org/wiki/Incidence_(epidemiology)"^^ . "In epidemiology, incidence is a measure of the probability of occurrence of a given medical condition in a population within a specified period of time." . . . . "Incidence"@en . . . "Incidence proportion (also known as cumulative incidence) is the number of new cases within a specified time period divided by the size of the population initially at risk. For example, if a population initially contains 1,000 non-diseased persons and 28 develop a condition over two years of observation, the incidence proportion is 28 cases per 1,000 persons per two years, i.e. 2.8% per two years."^^ . . . "https://en.wikipedia.org/wiki/Cumulative_incidence"^^ . "https://en.wikipedia.org/wiki/Incidence_(epidemiology)"^^ . "Incidence proportion (also known as cumulative incidence) is the number of new cases within a specified time period divided by the size of the population initially at risk. For example, if a population initially contains 1,000 non-diseased persons and 28 develop a condition over two years of observation, the incidence proportion is 28 cases per 1,000 persons per two years, i.e. 2.8% per two years." . . . . "Incidence Proportion"@en . . . . "The incidence rate is a measure of the frequency with which a disease or other incident occurs over a specified time period. It is also known as the incidence density rate or person-time incidence rate, when the denominator is the combined person-time of the population at risk (the sum of the time duration of exposure across all persons exposed)"^^ . . . "https://en.wikipedia.org/wiki/Incidence_(epidemiology)"^^ . "The incidence rate is a measure of the frequency with which a disease or other incident occurs over a specified time period. It is also known as the incidence density rate or person-time incidence rate, when the denominator is the combined person-time of the population at risk (the sum of the time duration of exposure across all persons exposed)" . . . . "Incidence Rate"@en . . . . "\"Inductance\" is an electromagentic quantity that characterizes a circuit's resistance to any change of electric current; a change in the electric current through induces an opposing electromotive force (EMF). Quantitatively, inductance is proportional to the magnetic flux per unit of electric current."^^ . . . . . . . . . "http://dbpedia.org/resource/Inductance"^^ . . "0112/2///62720#UAD065" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-19"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$L =\\frac{\\Psi}{I}$, where $I$ is an electric current in a thin conducting loop, and $\\Psi$ is the linked flux caused by that electric current."^^ . "\"Inductance\" is an electromagentic quantity that characterizes a circuit's resistance to any change of electric current; a change in the electric current through induces an opposing electromotive force (EMF). Quantitatively, inductance is proportional to the magnetic flux per unit of electric current." . . "L" . . "Inductance \u00E9lectrique"@fr . "Indukstans"@ms . "Induktivit\u00E4t"@de . "Induk\u010Dnost"@cs . "inductance"@en . "inductancia"@es . "inductantia"@la . "inductan\u021B\u0103"@ro . "indukcyjno\u015B\u0107"@pl . "induktivit\u00E1s"@hu . "induktivnost"@sl . "induttanza"@it . "indut\u00E2ncia"@pt . "\u0130nd\u00FCktans"@tr . "\u0418\u043D\u0434\u0443\u043A\u0442\u0438\u0432\u043D\u043E\u0441\u0442"@bg . "\u0418\u043D\u0434\u0443\u043A\u0442\u0438\u0432\u043D\u043E\u0441\u0442\u044C"@ru . "\u05D4\u05E9\u05E8\u05D0\u05D5\u05EA"@he . "\u0627\u0644\u0642\u0627\u0648\u0631\u06CC"@fa . "\u0627\u0644\u0645\u062D\u0627\u062B\u0629 (\u0627\u0644\u062A\u062D\u0631\u064A\u0636)"@ar . "\u092A\u094D\u0930\u0947\u0930\u0915\u0924\u094D\u0935"@hi . "\u30A4\u30F3\u30C0\u30AF\u30BF\u30F3\u30B9\u30FB\u8A98\u5C0E\u4FC2\u6570"@ja . "\u7535\u611F"@zh . . "Induktiviti"@ms . "inductivity"@en . . "The \"Infinite Multiplication Factor\" is the multiplication factor for an infinite medium or for an infinite repeating lattice."^^ . . . "http://en.wikipedia.org/wiki/Four_factor_formula"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$k_\\infty$"^^ . "The \"Infinite Multiplication Factor\" is the multiplication factor for an infinite medium or for an infinite repeating lattice." . . "Infinite Multiplication Factor"@en . . . . . "0112/2///62720#UAD066" . . "information content" . . "I(xi) as the information content I(xi) of a result xi (e.g. the occurrence of a character xi) is the common logarithm of the reciprocal of the probability p(xi) of its occurrence, i.e.: l(x) lg 1/p(x) Hart, where p(x) is the probability of the event x"@en . . "(xi) als der Informationsgehalt I(xi) eines Ergebnisses xi (z. B. das Auftreten eines Zeichens xi) ist der dekatischer Logarithmus des Kehrwertes der Wahrscheinlichkeit p (xi) f\u00FCr sein eintreten, also: l(x) lg 1/p(x) Hart, dabei ist p(x) die Wahrscheinlichkeit des Ereignisses x"@de . "0173-1#Z4-BAJ468#001" . . "information content expressed as a logarithm to base 10"@en-US . . "I(xi) as the information content I(xi) of a result xi (e.g. the occurrence of a character xi) is the binary logarithm of the reciprocal of the probability p(xi) of its occurrence, i.e.: l(x) lb 1/p(x) Sh, where p(x) is the probability of the event x"@en . . "I(xi) als der Informationsgehalt I(xi) eines Ergebnisses xi (z. B. das Auftreten eines Zeichens xi) ist der bin\u00E4re Logarithmus des Kehrwertes der Wahrscheinlichkeit p (xi) f\u00FCr sein eintreten, also: l(x) = lb 1/p(x) Sh, dabei ist p(x) die Wahrscheinlichkeit des Ereignisses x"@de . "0173-1#Z4-BAJ463#001" . . "information content expressed as a logarithm to base 2"@en-US . . "I(xi) as the information content I(xi) of a result xi (e.g. the occurrence of a character xi) is the natural logarithm of the reciprocal of the probability p(xi) of its occurrence, i.e.: l(x) ln 1/p(x) nat, where p(x) is the probability of the event x"@en . . "I(xi) als der Informationsgehalt I(xi) eines Ergebnisses xi (z. B. das Auftreten eines Zeichens xi) ist der nat\u00FCrliche Logarithmus des Kehrwertes der Wahrscheinlichkeit p (xi) f\u00FCr sein eintreten, also: l(x) = ln 1/p(x) nat, dabei ist p(x) die Wahrscheinlichkeit des Ereignisses x"@de . "0173-1#Z4-BAJ469#001" . . "information content expressed as a logarithm to base e"@en-US . . "Information Entropy is a concept from information theory. It tells how much information there is in an event. In general, the more uncertain or random the event is, the more information it will contain. The concept of information entropy was created by a mathematician. He was named Claude Elwood Shannon. It has applications in many areas, including lossless data compression, statistical inference, cryptography and recently in other disciplines as biology, physics or machine learning."^^ . . . . . . . . . . . . . . . . . . . . . "http://simple.wikipedia.org/wiki/Information_entropy"^^ . "Information Entropy is a concept from information theory. It tells how much information there is in an event. In general, the more uncertain or random the event is, the more information it will contain. The concept of information entropy was created by a mathematician. He was named Claude Elwood Shannon. It has applications in many areas, including lossless data compression, statistical inference, cryptography and recently in other disciplines as biology, physics or machine learning." . . "Information Entropy"@en . . . . . . . . "Information flow rate"@en . . . . . . . . . . . "Initial Expansion Ratio"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Initial Nozzle Throat Diameter"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "M_{o}" . . "Initial Vehicle Mass"@en . . . "The velocity of a moving body at starting; especially, the velocity of a projectile as it leaves the mouth of a firearm from which it is discharged."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "The velocity of a moving body at starting; especially, the velocity of a projectile as it leaves the mouth of a firearm from which it is discharged." . "V_{i}" . . "Initial Velocity"@en . . . "\"Instantaneous Power}, for a two-terminal element or a two-terminal circuit with terminals A and B, is the product of the voltage $u_{AB}$ between the terminals and the electric current i in the element or circuit: $p = $u_{AB} \\cdot i$, where $u_{AB\" is the line integral of the electric field strength from A to B, and where the electric current in the element or circuit is taken positive if its direction is from A to B and negative in the opposite case. For an n-terminal circuit, it is the sum of the instantaneous powers relative to the n - 1 pairs of terminals when one of the terminals is chosen as a common terminal for the pairs. For a polyphase element, it is the sum of the instantaneous powers in all phase elements of a polyphase element. For a polyphase line consisting of m line conductors and one neutral conductor, it is the sum of the m instantaneous powers expressed for each line conductor by the product of the polyphase line-to-neutral voltage and the corresponding line current."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Power"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-30"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-31"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=141-02-14"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=141-03-10"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$p = ui$, where $u$ is instantaneous voltage and $i$ is instantaneous electric current."^^ . "p" . . "Instantaneous Power"@en . . . "The \"InternalConversionFactor\" describes the rate of internal conversion. It is the ratio of the number of internal conversion electrons to the number of gamma quanta emitted by the radioactive atom in a given transition."^^ . . . "http://en.wikipedia.org/wiki/Internal_conversion_coefficient"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"InternalConversionFactor\" describes the rate of internal conversion. It is the ratio of the number of internal conversion electrons to the number of gamma quanta emitted by the radioactive atom in a given transition." . "a" . . "InternalConversionFactor"@en . . "\"Internal Energy\" is simply its energy. \"internal\" refers to the fact that some energy contributions are not considered. For instance, when the total system is in uniform motion, it has kinetic energy. This overall kinetic energy is never seen as part of the internal energy; one could call it external energy. Or, if the system is at constant non-zero height above the surface the Earth, it has constant potential energy in the gravitational field of the Earth. Gravitational energy is only taken into account when it plays a role in the phenomenon of interest, for instance in a colloidal suspension, where the gravitation influences the up- downward motion of the small particles comprising the colloid. In all other cases, gravitational energy is assumed not to contribute to the internal energy; one may call it again external energy."^^ . "int-energy" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Internal_energy"^^ . . . . "http://en.citizendium.org/wiki/Internal_energy"^^ . "For a closed thermodynamic system, $\\Delta U = Q + W$, where $Q$ is amount of heat transferred to the system and $W$ is work done on the system provided that no chemical reactions occur."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "\"Internal Energy\" is simply its energy. \"internal\" refers to the fact that some energy contributions are not considered. For instance, when the total system is in uniform motion, it has kinetic energy. This overall kinetic energy is never seen as part of the internal energy; one could call it external energy. Or, if the system is at constant non-zero height above the surface the Earth, it has constant potential energy in the gravitational field of the Earth. Gravitational energy is only taken into account when it plays a role in the phenomenon of interest, for instance in a colloidal suspension, where the gravitation influences the up- downward motion of the small particles comprising the colloid. In all other cases, gravitational energy is assumed not to contribute to the internal energy; one may call it again external energy." . "U" . . "Internal Energy"@en . . . . . . . "\"Intinsic Carrier Density\" is proportional to electron and hole densities."^^ . . . . . . . . . "$np = n_i^2$, where $n$ is electron density and $p$ is hole density."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Intinsic Carrier Density\" is proportional to electron and hole densities." . "n_i" . . "Intinsic Carrier Density"@en . . . . . . "Inverse amount of substance"@en . . . . . . "0112/2///62720#UAD156" . . "Inverse Energy"@en . . . . . . . "Inverse Square Energy"@en . . "Reciprocal length or inverse length is a measurement used in several branches of science and mathematics. As the reciprocal of length, common units used for this measurement include the reciprocal metre or inverse metre ($m^{-1}$), the reciprocal centimetre or inverse centimetre ($cm^{-1}$), and, in optics, the dioptre."^^ . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Reciprocal_length"^^ . . "Inverse Length"@en . . . . . "Inverse Length Temperature"@en . . . . . . "Inverse Magnetic Flux"@en . . . . . . . . . . "0112/2///62720#UAD157" . . "reciprocal mass" . . . . . . "Inverse Square Mass"@en . . . . . "Inverse Permittivity"@en . . . . . . . . . . "Inverse Pressure"@en . . . "true"^^ . . . "Inverse Square Energy"@en . . . "true"^^ . . . "Inverse Square Mass"@en . . . "true"^^ . . . "Inverse Square Time"@en . . . . . . . "Inverse Temperature"@en . . . . "Inverse Time"@en . . . . . . "Inverse Time Temperature"@en . . . . . "Inverse Square Time"@en . . . . . . . . . . . . "Inverse Volume"@en . . "\"Ion Concentration\" is the number of ions per unit volume. Also known as ion density."^^ . . . "\"Ion Concentration\" is the number of ions per unit volume. Also known as ion density." . . "Ion Concentration"@en . . "An ion current is the influx and/or efflux of ions through an ion channel."^^ . . . . . . . . . . . . . . . . . . "An ion current is the influx and/or efflux of ions through an ion channel." . "j" . . "Ion Current"@en . . . "\"Ion Density\" is the number of ions per unit volume. Also known as ion concentration."^^ . . . . . . . . . . "http://www.answers.com/topic/ion-density"^^ . "$n^+ = \\frac{N^+}{V}$, $n^- = \\frac{N^-}{V}$\n\nwhere $N^+$ and $N^-$ are the number of positive and negative ions, respectively, in a 3D domain with volume $V$."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Ion Density\" is the number of ions per unit volume. Also known as ion concentration." . "N, n^+, n^-" . . "Ion Density"@en . . . "The \"Ion Transport Number\" is a quantity which indicates the different contribution of ions to the electric current in electrolytes due to different electrical mobility."^^ . . . "http://en.wikipedia.org/wiki/Ion_transport_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$t_B = \\frac{i_B}{i}$, where $i_B$ is the electric current carried by the ion $B$ and $i$ is the total electric current."^^ . "The \"Ion Transport Number\" is a quantity which indicates the different contribution of ions to the electric current in electrolytes due to different electrical mobility." . "t_B" . . "Ion Transport Number"@en . . . "The total charge of an ion. The charge of an electron; the charge of any ion is equal to this electron charge in magnitude, or is an integral multiple of it."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "The total charge of an ion. The charge of an electron; the charge of any ion is equal to this electron charge in magnitude, or is an integral multiple of it." . "q" . . "Ionic Charge"@en . . . "The \"Ionic Strength\" of a solution is a measure of the concentration of ions in that solution."^^ . . . . . . . . . "http://en.wikipedia.org/wiki/Ionic_strength"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$I = \\frac{1}{2} \\sum z_i^2 b_i$, where the summation is carried out over all ions with charge number $z_i$ and molality $m_i$."^^ . "The \"Ionic Strength\" of a solution is a measure of the concentration of ions in that solution." . "I" . . "Ionic Strength"@en . . "\"Ionization Energy\" is the energy difference between an electron at rest at infinity and an electron at a certain energy level. The amount of energy required to remove an electron from that atom or molecule in the gas phase."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Ionization_energy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Ionization Energy\" is the energy difference between an electron at rest at infinity and an electron at a certain energy level. The amount of energy required to remove an electron from that atom or molecule in the gas phase." . "E_i" . . "Ionization Energy"@en . . . "Irradiance and Radiant Emittance are radiometry terms for the power per unit area of electromagnetic radiation at a surface. \"Irradiance\" is used when the electromagnetic radiation is incident on the surface. \"Radiant emmitance\" (or \"radiant exitance\") is used when the radiation is emerging from the surface."^^ . "W-PER-M2" . . . . . . . . . . . . . . . . . . . . . . . . . . "0112/2///62720#UAD068" . "http://en.wikipedia.org/wiki/Irradiance"^^ . "$E = \\frac{d\\Phi}{dA}$, where $d\\Phi$ is the radiant flux incident on an element of the surface with area $dA$."^^ . "Irradiance and Radiant Emittance are radiometry terms for the power per unit area of electromagnetic radiation at a surface. \"Irradiance\" is used when the electromagnetic radiation is incident on the surface. \"Radiant emmitance\" (or \"radiant exitance\") is used when the radiation is emerging from the surface." . "E" . . "Bestrahlungsst\u00E4rke"@de . "Intenzita z\u00E1\u0159en\u00ED"@cs . "Kepenyinaran"@ms . "irradiance"@en . "irradiancia"@es . "irradianza"@it . "irradi\u00E2ncia"@pt . "yo\u011Funluk"@tr . "\u00E9clairement \u00E9nerg\u00E9tique"@fr . "\u041F\u043E\u0432\u0435\u0440\u0445\u043D\u043E\u0441\u0442\u043D\u0430\u044F \u043F\u043B\u043E\u0442\u043D\u043E\u0441\u0442\u044C \u043F\u043E\u0442\u043E\u043A\u0430 \u044D\u043D\u0435\u0440\u0433\u0438\u0438"@ru . "\u0627\u0644\u0637\u0627\u0642\u0629 \u0627\u0644\u0647\u0644\u0627\u0645\u064A\u0629"@ar . "\u067E\u0631\u062A\u0648 \u0627\u0641\u06A9\u0646\u06CC/\u0686\u06AF\u0627\u0644\u06CC \u062A\u0627\u0628\u0634"@fa . "\u71B1\u6D41\u675F"@ja . "\u8F90\u7167\u5EA6"@zh . "koyuluk"@tr . . . "Isentropic compressibility is the extent to which a material reduces its volume when it is subjected to compressive stresses at a constant value of entropy."^^ . . . . "http://en.wikipedia.org/wiki/Compressibility"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$\\varkappa_S = \\frac{1}{V}\\left (\\frac{\\partial V}{\\partial p} \\right )_S$, where $V$ is volume, $p$ is $pressure$, and $S$ is entropy,"^^ . "$\\varkappa_S$"^^ . "Isentropic compressibility is the extent to which a material reduces its volume when it is subjected to compressive stresses at a constant value of entropy." . . "Isentropic Compressibility"@en . . "Isentropic exponent is a variant of \"Specific Heat Ratio Capacities}. For an ideal gas \\textit{Isentropic Exponent\"$, \\varkappa$. is equal to $\\gamma$, the ratio of its specific heat capacities $c_p$ and $c_v$ under steady pressure and volume."^^ . . . "http://en.citizendium.org/wiki/Specific_heat_ratio"^^ . "http://en.wikipedia.org/wiki/Compressibility"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$\\varkappa = -\\frac{V}{p}\\left \\{ \\frac{\\partial p}{\\partial V}\\right \\}_S$, where $V$ is volume, $p$ is pressure, and $S$ is entropy."^^ . "$\\varkappa$"^^ . . "Coefficiente di dilatazione adiabatica"@it . "Coeficient de transformare adiabatic\u0103"@ro . "Coeficiente de dilataci\u00F3n adiab\u00E1tica"@es . "Coeficiente de expans\u00E3o adiab\u00E1tica"@pt . "Isentropenexponent"@de . "Poissonova konstanta"@cs . "Wyk\u0142adnik adiabaty"@pl . "adiabatni eksponent"@sl . "exposant isoentropique"@fr . "isentropic exponent"@en . "\u0131s\u0131 s\u0131\u011Fas\u0131 oran\u0131;\u00A0adyabatik indeks"@tr . "\u041F\u043E\u043A\u0430\u0437\u0430\u0442\u0435\u043B\u044C \u0430\u0434\u0438\u0430\u0431\u0430\u0442\u044B"@ru . "\u0646\u0633\u0628\u0629 \u0627\u0644\u0633\u0639\u0629 \u0627\u0644\u062D\u0631\u0627\u0631\u064A\u0629"@ar . "\u6BD4\u71B1\u6BD4"@ja . "\u7EDD\u70ED\u6307\u6570"@zh . . "indice adiabatico"@it . "indice adiabatique"@fr . . "The isothermal compressibility defines the rate of change of system volume with pressure."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Compressibility"^^ . "$\\varkappa_T = \\frac{1}{V}\\left (\\frac{\\partial V}{\\partial p} \\right )_T$, where $V$ is volume, $p$ is $pressure$, and $T$ is thermodynamic temperature."^^ . "$\\varkappa_T$"^^ . "The isothermal compressibility defines the rate of change of system volume with pressure." . . "Izotermna stisljivost"@sl . "Ketermampatan isotermik"@ms . "compresibilidad isot\u00E9rmica"@es . "compressibilidade isot\u00E9rmica"@pt . "compressibilit\u00E9 isotherme"@fr . "comprimibilit\u00E0 isotermica"@it . "isothermal compressibility"@en . "isotherme Kompressibilit\u00E4t"@de . "objemov\u00E1 stla\u010Ditelnost"@cs . "\u015Bci\u015Bliwo\u015B\u0107 izotermiczna"@pl . "\u0438\u0437\u043E\u0442\u0435\u0440\u043C\u0438\u0447\u0435\u0441\u043A\u0438\u0439 \u043A\u043E\u044D\u0444\u0444\u0438\u0446\u0438\u0435\u043D\u0442 \u0441\u0436\u0438\u043C\u0430\u0435\u043C\u043E\u0441\u0442\u0438"@ru . "\u0636\u0631\u06CC\u0628 \u062A\u0631\u0627\u06A9\u0645\u200C\u067E\u0630\u06CC\u0631\u06CC \u0647\u0645\u062F\u0645\u0627"@fa . "\u0645\u0639\u0627\u0645\u0644 \u0627\u0644\u0627\u0646\u0636\u063A\u0627\u0637 \u0639\u0646\u062F \u062B\u0628\u0648\u062A \u062F\u0631\u062C\u0629 \u0627\u0644\u062D\u0631\u0627\u0631\u0629"@ar . "\u7B49\u6E29\u538B\u7F29\u7387"@zh . "\u7B49\u6E29\u5727\u7E2E\u7387"@ja . . "\"Isothermal Moisture Capacity\" is the capacity of a material to absorb moisture in the Effective Moisture Penetration Depth (EMPD) model."^^ . . . . . . . . . . . . . "https://bigladdersoftware.com/epx/docs/8-4/engineering-reference/effective-moisture-penetration-depth-empd.html#empd-nomenclature"^^ . . "Isothermal Moisture Capacity"@en . . . "\"Kerma\" is the sum of the initial kinetic energies of all the charged particles liberated by uncharged ionizing radiation (i.e., indirectly ionizing radiation such as photons and neutrons) in a sample of matter, divided by the mass of the sample."^^ . . . . . . "http://en.wikipedia.org/wiki/Kerma_(physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "For indirectly ionizing (uncharged) particles, $K= \\frac{dE_{tr}}{dm}$, where $dE_{tr}$ is the mean sum of the initial kinetic energies of all the charged ionizing particles liberated by uncharged ionizing particles in an element of matter, and $dm$ is the mass of that element."^^ . "\"Kerma\" is the sum of the initial kinetic energies of all the charged particles liberated by uncharged ionizing radiation (i.e., indirectly ionizing radiation such as photons and neutrons) in a sample of matter, divided by the mass of the sample." . "K" . . "Kerma"@en . . "\"Kerma Rate\" is the kerma per unit time."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Half-value_layer"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\dot{K} = \\frac{dK}{dt}$, where $K$ is the increment of kerma during time interval with duration $t$."^^ . "$\\dot{K}$"^^ . "\"Kerma Rate\" is the kerma per unit time." . . "Kerma Rate"@en . . "The ratio of the viscosity of a liquid to its density. Viscosity is a measure of the resistance of a fluid which is being deformed by either shear stress or tensile stress. In many situations, we are concerned with the ratio of the inertial force to the viscous force (that is the Reynolds number), the former characterized by the fluid density $\\rho$. This ratio is characterized by the kinematic viscosity (Greek letter $\\nu$), defined as follows: $\\nu = \\mu / \\rho$. The SI unit of $\\nu$ is $m^{2}/s$. The SI unit of $\\nu$ is $kg/m^{1}$."^^ . . . "http://dbpedia.org/resource/Viscosity"^^ . . "0112/2///62720#UAD070" . "http://en.wikipedia.org/wiki/Viscosity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\nu = \\frac{\\eta}{\\rho}$, where $\\eta$ is dynamic viscosity and $\\rho$ is mass density."^^ . "$\\nu$"^^ . . "Kelikatan kinematik"@ms . "Kinematik akmazl\u0131k"@tr . "Viscozitate cinematic\u0103"@ro . "kinematic viscosity"@en . "kinematische Viskosit\u00E4t"@de . "kinemati\u010Dna viskoznost"@sl . "lepko\u015B\u0107 kinematyczna"@pl . "viscosidad cinem\u00E1tica"@es . "viscosidade cinem\u00E1tica"@pt . "viscosit\u00E0 cinematica"@it . "viscosit\u00E9 cin\u00E9matique"@fr . "viskozita"@cs . "\u043A\u0438\u043D\u0435\u043C\u0430\u0442\u0438\u0447\u0435\u0441\u043A\u0443\u044E \u0432\u044F\u0437\u043A\u043E\u0441\u0442\u044C"@ru . "\u0644\u0632\u0648\u062C\u0629"@ar . "\u06AF\u0631\u0627\u0646\u0631\u0648\u06CC \u062C\u0646\u0628\u0634\u06CC/\u0648\u06CC\u0633\u06A9\u0648\u0632\u06CC\u062A\u0647 \u062C\u0646\u0628\u0634\u06CC"@fa . "\u0936\u094D\u092F\u093E\u0928\u0924\u093E"@hi . "\u7C98\u5EA6"@ja . "\u8FD0\u52A8\u7C98\u5EA6"@zh . . . . . "ratio of the dynamic viscosity and the density of a material measured at the same temperature, or ratio of the diffusion current density and carrier density gradient, or ratio of thermal conductivity divided by heat capacity"@en . . "Quotient aus der dynamischen Viskosit\u00E4t und der Dichte eines Stoffes oder Quotient Diffusionsstromdichte durch Gradient der Ladungstr\u00E4gerdichte oder Quotient W\u00E4rmeleitf\u00E4higkeit durch W\u00E4rmekapazit\u00E4t"@de . "0173-1#Z4-BAJ328#002" . . "kinematic viscosity or diffusion constant or thermal diffusivity"@en-US . . "$\\textit{Kinetic Energy}$ is the energy which a body possesses as a consequence of its motion, defined as one-half the product of its mass $m$ and the square of its speed $v$, $ \\frac{1}{2} mv^{2} $. The kinetic energy per unit volume of a fluid parcel is the $ \\frac{1}{2} p v^{2}$ , where $p$ is the density and $v$ the speed of the parcel. See potential energy. For relativistic speeds the kinetic energy is given by $E_k = mc^2 - m_0 c^2$, where $c$ is the velocity of light in a vacuum, $m_0$ is the rest mass, and $m$ is the moving mass."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Kinetic_energy"^^ . . "0112/2///62720#UAD071" . "http://en.wikipedia.org/wiki/Kinetic_energy"^^ . "$T = \\frac{mv^2}{2}$, where $m$ is mass and $v$ is speed."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "K" . "KE" . . "Kinetic Energy"@en . . . "energy presented in the movement of a body, composed of translation and rotation energies, determined by the movement of this body compared to another system and by its mass (mass distribution) or energy in the terms of heat"@en . . "Energie, die in der Bewegung eines K\u00F6rpers steckt und sich aus Translationsenergie und Rotationsenergie zusammen setzt, die durch die Bewegung dieses K\u00F6rpers gegen\u00FCber einem anderen System und durch seine Masse (Massenverteilung) bestimmt wird oder Energie in Form von W\u00E4rme"@de . "0173-1#Z4-BAJ280#002" . . "kinetic or thermal energy"@en-US . . "The Lagrange Function is a function that summarizes the dynamics of the system."^^ . . . . . "http://en.wikipedia.org/wiki/Lagrangian"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-76"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$L(q_i, \\dot{q_i}) = T(q_i, \\dot{q_i}) - V(q_i)$, where $T$ is kinetic energy, $V$ is potential energy, $q_i$ is a generalized coordinate, and $\\dot{q_i}$ is a generalized velocity."^^ . "The Lagrange Function is a function that summarizes the dynamics of the system." . "L" . . "Lagrange Function"@en . . "\"Landau-Ginzburg Number\", also known as the Ginzburg-Landau parameter, describes the relationship between London penetration depth and coherence length."^^ . . . "http://en.wikipedia.org/wiki/Ginzburg\u2013Landau_theory"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "At zero thermodynamic temperature $\\kappa = \\frac{\\lambda_L}{(\\varepsilon\\sqrt{2})}$, where $\\lambda_L$ is London penetration depth and $\\varepsilon$ is coherence length."^^ . "$\\kappa$"^^ . "\"Landau-Ginzburg Number\", also known as the Ginzburg-Landau parameter, describes the relationship between London penetration depth and coherence length." . . "Landau-Ginzburg Number"@en . . . "The \"Lande g-Factor\" is a particular example of a g-factor, namely for an electron with both spin and orbital angular momenta. It is named after Alfred Land\u00E9, who first described it in 1921."^^ . . . "http://en.wikipedia.org/wiki/G-factor_(physics)"^^ . "http://en.wikipedia.org/wiki/Land\u00E9_g-factor"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$g = \\frac{\\mu}{J\\mu_B}$, where $\\mu$ is the magnitude of magnetic dipole moment, $J$ is the total angular momentum quantum number, and $\\mu_B$ is the Bohr magneton."^^ . "The \"Lande g-Factor\" is a particular example of a g-factor, namely for an electron with both spin and orbital angular momenta. It is named after Alfred Land\u00E9, who first described it in 1921." . "g" . . "Lande g-Factor"@en . . "The \"Larmor Frequency\" describes angular momentum vector precession about the external field axis with an angular frequency."^^ . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Larmor_precession#Larmor_frequency"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\omega_L = \\frac{e}{2m_e}B$, where $e$ is the elementary charge, $m_e$ is the rest mass of electron, and $B$ is the magnetic flux density."^^ . "$\\omega_L$"^^ . "The \"Larmor Frequency\" describes angular momentum vector precession about the external field axis with an angular frequency." . . "Larmor Angular Frequency"@en . . . "\"Lattice Plane Spacing\" is the distance between successive lattice planes."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.matter.org.uk/diffraction/geometry/lattice_vectors.htm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Lattice Plane Spacing\" is the distance between successive lattice planes." . "d" . . "Lattice Plane Spacing"@en . . . "\"Lattice Vector\" is a translation vector that maps the crystal lattice on itself."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.matter.org.uk/diffraction/geometry/lattice_vectors.htm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Lattice Vector\" is a translation vector that maps the crystal lattice on itself." . "R" . . "Lattice Vector"@en . . . "\"Leakage Factor\" is the ratio of the total magnetic flux to the useful magnetic flux of a magnetic circuit."^^ . . "$leakage-factor$"^^ . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=221-04-12"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\sigma = 1 - k^2$, where $k$ is the coupling factor."^^ . "$\\sigma$"^^ . "\"Leakage Factor\" is the ratio of the total magnetic flux to the useful magnetic flux of a magnetic circuit." . . "Leakage Factor"@en . . "In geometric measurements, length most commonly refers to the est dimension of an object. In some contexts, the term \"length\" is reserved for a certain dimension of an object along which the length is measured."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Length"^^ . . "0112/2///62720#UAD072" . "http://en.wikipedia.org/wiki/Length"^^ . "In geometric measurements, length most commonly refers to the est dimension of an object. In some contexts, the term \"length\" is reserved for a certain dimension of an object along which the length is measured." . . "l" . . "D\u00E9lka"@cs . "L\u00E4nge"@de . "Panjang"@ms . "comprimento"@pt . "dol\u017Eina"@sl . "d\u0142ugo\u015B\u0107"@pl . "hossz"@hu . "length"@en . "longitud"@es . "longitudo"@la . "longueur"@fr . "lunghezza"@it . "lungime"@ro . "uzunluk"@tr . "\u039C\u03AE\u03BA\u03BF\u03C2"@el . "\u0414\u043B\u0438\u043D\u0430"@ru . "\u0414\u044A\u043B\u0436\u0438\u043D\u0430"@bg . "\u05D0\u05D5\u05E8\u05DA"@he . "\u0637\u0648\u0644"@ar . "\u0637\u0648\u0644"@fa . "\u0932\u092E\u094D\u092C\u093E\u0908"@hi . "\u9577\u3055"@ja . "\u957F\u5EA6"@zh . . . . "Length Force"@en . . . . . "Length Energy"@en . . . . . . . . . "Length Mass"@en . . . . . "Length Molar Energy"@en . . . . "Length per Unit Electric Current"@en . . . . "true"^^ . . . . . "Length Percentage"@en . . . . . . . . . . . . . . . . . . . . . "Length Ratio"@en . . . . . . . . "Length Temperature"@en . . . . . "Length Temperature Time"@en . . "The \"Lethargy\" is a dimensionless logarithm of the ratio of the energy of source neutrons to the energy of neutrons after a collision."^^ . . . "http://www.scribd.com/doc/51548050/149/Lethargy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$u = \\ln(\\frac{E_0}{E})$, where $E_0$ is a reference energy."^^ . "The \"Lethargy\" is a dimensionless logarithm of the ratio of the energy of source neutrons to the energy of neutrons after a collision." . "u" . . "Lethargy"@en . . "The \"Level Width\" is the uncertainty in the energy of a quantum-mechanical system having discrete energy levels in a state that is not strictly stationary. The system may be an atom, a molecule, or an atomic nucleus."^^ . . . . . "http://encyclopedia2.thefreedictionary.com/Level+Width"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\Gamma = \\frac{\\hbar}{\\tau}$, where $\\hbar$ is the reduced Planck constant and $\\tau$ is the mean lifetime."^^ . "$\\Gamma$"^^ . "The \"Level Width\" is the uncertainty in the energy of a quantum-mechanical system having discrete energy levels in a state that is not strictly stationary. The system may be an atom, a molecule, or an atomic nucleus." . . "Level Width"@en . . "The lift coefficient is a dimensionless coefficient that relates the lift generated by a lifting body, the dynamic pressure of the fluid flow around the body, and a reference area associated with the body."^^ . . . . . . . . . . . . . "The lift coefficient is a dimensionless coefficient that relates the lift generated by a lifting body, the dynamic pressure of the fluid flow around the body, and a reference area associated with the body." . "C_{L}" . . "Lift Coefficient"@en . . . "The lift force, lifting force or simply lift is the sum of all the forces on a body that force it to move perpendicular to the direction of flow."^^ . . . . . . . . . . . . . . . . . . . . . . . . . "The lift force, lifting force or simply lift is the sum of all the forces on a body that force it to move perpendicular to the direction of flow." . "L" . . "Lift Force"@en . . . "The Linear Absorption Coefficient is a quantity that characterizes how easily a material or medium can be penetrated by a beam of light, sound, particles, or other energy or matter."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Attenuation_coefficient"^^ . "$\\alpha(\\lambda) = \\frac{1}{\\Phi_\\lambda(\\lambda)}\\frac{d\\Phi_\\lambda(\\lambda)}{dl}$, where $\\frac{d\\Phi}{\\Phi}$ is the relative decrease, caused by absorption, in the spectral radiant flux $\\Phi$ of a collimated beam of electromagnetic radiation corresponding to the wavelength $\\lambda$ during traversal of an infinitesimal layer of a medium and $dl$ is the length traversed."^^ . "$\\mu$"^^ . "The Linear Absorption Coefficient is a quantity that characterizes how easily a material or medium can be penetrated by a beam of light, sound, particles, or other energy or matter." . . "Linear Absorption Coefficient"@en . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Acceleration"^^ . . . . "Linear Acceleration"@en . . "\"Linear Attenuation Coefficient\", also called the attenuation coefficient, narrow beam attenuation coefficient, or absorption coefficient, is a quantity that characterizes how easily a material or medium can be penetrated by a beam of light, sound, particles, or other energy or matter."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Attenuation_coefficient"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\mu = -\\frac{1}{J}\\frac{dJ}{dx}$, where $J$ is the magnitude of the current rate of a beam of particles parallel to the $x-direction$.\n\nOr:\n\n$\\mu(\\lambda) = \\frac{1}{\\Phi_\\lambda(\\lambda)}\\frac{d\\Phi_\\lambda(\\lambda)}{dl}$, where $\\frac{d\\Phi}{\\Phi}$ is the relative decrease in the spectral radiant flux $\\Phi$ of a collimated beam of electromagnetic radiation corresponding to the wavelength $\\lambda$ during traversal of an infinitesimal layer of a medium and $dl$ is the length traversed."^^ . "$\\mu$"^^ . "\"Linear Attenuation Coefficient\", also called the attenuation coefficient, narrow beam attenuation coefficient, or absorption coefficient, is a quantity that characterizes how easily a material or medium can be penetrated by a beam of light, sound, particles, or other energy or matter." . . "Linear Attenuation Coefficient"@en . . . . . . . . . . . . "0112/2///62720#UAD074" . . "lineic bit density" . . "Linear Compressibility is a measure of the relative length change of a solid as a response to a normal force change."^^ . . . "Linear Compressibility is a measure of the relative length change of a solid as a response to a normal force change." . . "Linear Compressibility"@en . . "The Linear density, linear mass density or linear mass is a measure of mass per unit of length, and it is a characteristic of strings or other one-dimensional objects."^^ . . . . "http://en.wikipedia.org/wiki/Linear_density"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\rho_l = \\frac{dm}{dl}$, where $m$ is mass and $l$ is length."^^ . "$\\rho_l$"^^ . "The Linear density, linear mass density or linear mass is a measure of mass per unit of length, and it is a characteristic of strings or other one-dimensional objects." . . "Linear Density"@en . . . "0112/2///62720#UAD075" . . "lineic electric charge" . . "\"Linear Electric Linear Current\" is the electric current per unit line."^^ . . . . . . . . "0112/2///62720#UAD076" . "http://www.asknumbers.com/ElectricalConversion.aspx"^^ . "\"Linear Electric Linear Current\" is the electric current per unit line." . . "Linear Electric Current"@en . . . "\"Linear Electric Linear Current Density\" is the electric current per unit length. Electric current, $I$, through a curve $C$ is defined as $I = \\int_C J _s \\times e_n$, where $e_n$ is a unit vector perpendicular to the surface and line vector element, and $dr$ is the differential of position vector $r$."^^ . . . . . . . . "http://www.asknumbers.com/ElectricalConversion.aspx"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$J_s = \\rho_A v$, where $\\rho_A$ is surface density of electric charge and $v$ is velocity."^^ . "J_s" . . "Linear Electric Current Density"@en . . . . "\"Linear Energy Transfer\" (LET) is the linear density of energy lost by a charged ionizing particle travelling through matter.Typically, this measure is used to quantify the effects of ionizing radiation on biological specimens or electronic devices."^^ . . . . "http://dbpedia.org/resource/Linear_energy_transfer"^^ . . "http://en.wikipedia.org/wiki/Linear_energy_transfer"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "For ionizing charged particles, $L_\\Delta = \\frac{dE_\\Delta}{dl}$, where $dE_\\Delta$ is the mean energy lost in elctronic collisions locally to matter along a small path through the matter, minus the sum of the kinetic energies of all the electrons released with kinetic energies in excess of $\\Delta$, and $dl$ is the length of that path."^^ . "$L_\\Delta$"^^ . "$L_\\bigtriangleup$"^^ . "\"Linear Energy Transfer\" (LET) is the linear density of energy lost by a charged ionizing particle travelling through matter.Typically, this measure is used to quantify the effects of ionizing radiation on biological specimens or electronic devices." . . "Linear Energy Transfer"@en . . . . . . . "$lnr-exp-coef$"^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$\\alpha_l = \\frac{1}{l} \\; \\frac{dl}{dT}$, where $l$ is $length$ and $T$ is thermodynamic temperature."^^ . "$\\alpha_l$"^^ . . . . "coefficient de dilatation lin\u00E9ique"@fr . "coefficiente di dilatazione lineare"@it . "coeficiente de dilata\u00E7\u00E3o t\u00E9rmica linear"@pt . "coeficiente de expansi\u00F3n t\u00E9rmica lineal"@es . "linear expansion coefficient"@en . "linearer Ausdehnungskoeffizient"@de . "wsp\u00F3\u0142czynnik liniowej rozszerzalno\u015Bci cieplnej"@pl . "\u0645\u0639\u062F\u0644 \u0627\u0644\u062A\u0645\u062F\u062F \u0627\u0644\u062D\u0631\u0627\u0631\u064A \u0627\u0644\u062E\u0637\u064A"@ar . "\u7DDA\u71B1\u81A8\u5F35\u4FC2\u6570"@ja . "\u7EBF\u6027\u70ED\u81A8\u80C0\u7CFB\u6570"@zh . . . "Another name for Force Per Length, used by the Industry Foundation Classes (IFC) standard."^^ . . . . . . . . . . . . . . . . . . . . . . "0112/2///62720#UAD077" . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/schema/ifcmeasureresource/lexical/ifclinearforcemeasure.htm"^^ . "Another name for Force Per Length, used by the Industry Foundation Classes (IFC) standard." . . "Linear Force"@en . "Streckenlast"@de . . . "\"Linear Ionization\" is a description of how the ionization of an atom or molecule takes place. For example, an ion with a +2 charge can be created only from an ion with a +1 charge or a +3 charge. That is, the numerical charge of an atom or molecule must change sequentially, always moving from one number to an adjacent, or sequential, number. Using sequential ionization definition."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Ionization#Classical_ionization"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$N_{il} = \\frac{1}{e}\\frac{dQ}{dl}$, where $e$ is the elementary charge and $dQ$ is the average total charge of all positive ions produced over an infinitesimal element of the path with length $dl$ by an ionizing charged particle."^^ . "\"Linear Ionization\" is a description of how the ionization of an atom or molecule takes place. For example, an ion with a +2 charge can be created only from an ion with a +1 charge or a +3 charge. That is, the numerical charge of an atom or molecule must change sequentially, always moving from one number to an adjacent, or sequential, number. Using sequential ionization definition." . "N_{il}" . . "Linear Ionization"@en . . . . . . "0112/2///62720#UAD078" . . "lineic logarithmic ratio" . . . . . "0112/2///62720#UAD079" . . "lineic mass" . . "Linear momentum is the quantity obtained by multiplying the mass of a body by its linear velocity. The momentum of a continuous medium is given by the integral of the velocity over the mass of the medium or by the product of the total mass of the medium and the velocity of the center of gravity of the medium.The SI unit for linear momentum is meter-kilogram per second ($m-kg/s$)."^^ . . . . . . "http://dbpedia.org/resource/Momentum"^^ . . . "http://en.wikipedia.org/wiki/Momentum"^^ . "p = m\\upsilon"^^ . "p" . . "Linear Momentum"@en . . . "0112/2///62720#UAD080" . . "lineic power" . . . . . . . . . . . "0112/2///62720#UAD081" . . "lineic resistance" . . "Stiffness is the extent to which an object resists deformation in response to an applied force. Linear Stiffness is the term used in the Industry Foundation Classes (IFC) standard."^^ . . . . . . . . . . . . . . . . . . . . . . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/schema/ifcmeasureresource/lexical/ifclinearstiffnessmeasure.htm"^^ . "Stiffness is the extent to which an object resists deformation in response to an applied force. Linear Stiffness is the term used in the Industry Foundation Classes (IFC) standard." . . "Linear Force"@en . "Streckenlast"@de . . . "A strain is a normalized measure of deformation representing the displacement between particles in the body relative to a reference length."^^ . . . "http://en.wikipedia.org/wiki/Deformation_(mechanics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\xi = \\frac{\\Delta l}{l_0}$, where $\\Delta l$ is the increase in length and $l_0$ is the length in a reference state to be specified."^^ . "$\\xi$"^^ . "A strain is a normalized measure of deformation representing the displacement between particles in the body relative to a reference length." . . "Linear Strain"@en . . "When the temperature of a substance changes, the energy that is stored in the intermolecular bonds between atoms changes. When the stored energy increases, so does the length of the molecular bonds. As a result, solids typically expand in response to heating and contract on cooling; this dimensional response to temperature change is expressed by its coefficient of thermal expansion. Different coefficients of thermal expansion can be defined for a substance depending on whether the expansion is measured by: linear thermal expansion, area thermal expansion, or volumetric thermal expansion."^^ . . . . . . . . . . . "http://en.wikipedia.org/linear_thermal_expansion"^^ . "When the temperature of a substance changes, the energy that is stored in the intermolecular bonds between atoms changes. When the stored energy increases, so does the length of the molecular bonds. As a result, solids typically expand in response to heating and contract on cooling; this dimensional response to temperature change is expressed by its coefficient of thermal expansion. Different coefficients of thermal expansion can be defined for a substance depending on whether the expansion is measured by: linear thermal expansion, area thermal expansion, or volumetric thermal expansion." . . "Linear Thermal Expansion"@en . . . . . "0112/2///62720#UAD082" . . "lineic torque" . . "Linear Velocity, as the name implies deals with speed in a straight line, the units are often $km/hr$ or $m/s$ or $mph$ (miles per hour). Linear Velocity (v) = change in distance/change in time, where $v = \\bigtriangleup d/\\bigtriangleup t$"^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Velocity"^^ . . . "http://au.answers.yahoo.com/question/index?qid=20080319082534AAtrClv"^^ . "v" . . "Linear Velocity"@en . . "ratio identifying the relationship between induced voltage and velocity"@en . . "Verh\u00E4ltnis, das den Zusammenhang zwischen induzierter Spannung zur Geschwindigkeit kennzeichnet"@de . "0173-1#Z4-BAJ336#003" . . "linear voltage coefficient"@en-US . . "electric charge divided by related length"@en . . "elektrische Ladung dividiert durch dazugeh\u00F6rige L\u00E4nge"@de . "0173-1#Z4-BAJ457#001" . . "lineic charge"@en-US . . "number of data, usually dependent on the respective information complexity or its coding procedure, divided by the related length"@en . . "Anzahl von Daten, die in der Regel abh\u00E4ngig von der jeweiligen Komplexit\u00E4t der Information oder deren Codierungsverfahren ist, dividiert durch die zugeh\u00F6rige L\u00E4nge"@de . "0173-1#Z4-BAJ331#002" . . "lineic data volume"@en-US . . "logarithm of the relationship between the value of a given quantity and the quantity of a reference value of the same type divided by the related length"@en . . "Logarithmus des Verh\u00E4ltnisses des Werts einer gegebenen Gr\u00F6\u00DFe zum Wert einer Bezugsgr\u00F6\u00DFe gleicher Art dividiert durch die zugeh\u00F6rige L\u00E4nge"@de . "0173-1#Z4-BAJ332#003" . . "lineic logarithmic ratio"@en-US . . "ratio between mass divided by the related length"@en . . "Quotient Masse dividiert durch die dazugeh\u00F6rige L\u00E4nge"@de . "0173-1#Z4-BAJ341#003" . . "lineic mass"@en-US . . "power divided by the associated length"@en . . . "Leistung dividiert durch die zugeh\u00F6rige L\u00E4nge"@de . "0173-1#Z4-BAJ418#003" . . "lineic power"@en-US . . . . "lineic quantity"@en-US . . "ratio of resistance divided by length"@en . . "Quotient Widerstand durch L\u00E4nge"@de . "0173-1#Z4-BAJ333#003" . . "lineic resistance"@en-US . . "graphic resolution capacity of output devices such as printers or of data acquisition such as scanners, as a number of pixels per length"@en . . "grafisches Aufl\u00F6sungsverm\u00F6gen von Ausgabeger\u00E4ten wie Druckern oder von Datenerfassungsger\u00E4ten wie Scannern als Anzahl der Bildpunkte je L\u00E4nge"@de . "0173-1#Z4-BAJ438#002" . . "lineic resolution"@en-US . . "torque divided by the appropriate length"@en . . "Drehmoment dividiert durch die zugeh\u00F6rige L\u00E4nge"@de . "0173-1#Z4-BAJ433#001" . . "lineic torque"@en-US . . "\"Linked Flux\" is defined as the path integral of the magnetic vector potential. This is the line integral of a magnetic vector potential $A$ along a curve $C$. The line vector element $dr$ is the differential of position vector $r$."^^ . . . . . . . . . "http://dbpedia.org/resource/Magnetic_flux"^^ . "$linked-flux$"^^ . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-24"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "http://www.oxfordreference.com/view/10.1093/acref/9780199233991.001.0001/acref-9780199233991-e-1800"^^ . "$\\Psi_m = \\int_C A \\cdot dr$, where $A$ is magnetic vector potential and $dr$ is the vector element of the curve $C$."^^ . "$\\Psi$"^^ . "$\\Psi_m$"^^ . . "Linked Flux"@en . . . "Liquid volume is the volume of a given amount of liquid, that is, the amount of space a liquid takes up. There are a number of different units used to measure liquid volume, but most of them fall under either the metric system of measurement or the Imperial system of measurement."^^ . . . . . . . . . . . . . "http://www.ehow.com/facts_6371078_liquid-volume_.html"^^ . "Liquid volume is the volume of a given amount of liquid, that is, the amount of space a liquid takes up. There are a number of different units used to measure liquid volume, but most of them fall under either the metric system of measurement or the Imperial system of measurement." . . "Liquid Volume"@en . . . . "0112/2///62720#UAD084" . . "logarithmic frequency interval to base 10" . . . "0112/2///62720#UAD085" . . "logarithmic ratio to base 10" . . . "0112/2///62720#UAD086" . . "logarithmic ratio to base e" . . "A dimensionless ratio that is the logarithm of the ratio of a compound's concentration within a two phase mixture of liquid octanol and gaseous air at equilibrium. More simply, it is a comparison of the solubilities of the compound solute in these two immiscible substances."^^ . . . "A dimensionless ratio that is the logarithm of the ratio of a compound's concentration within a two phase mixture of liquid octanol and gaseous air at equilibrium. More simply, it is a comparison of the solubilities of the compound solute in these two immiscible substances." . . "Octanol Air Partition Coefficient"@en . . . "A dimensionless ratio that is the logarithm of the ratio of a compound's concentration within a two phase mixture of octanol and water at equilibrium. More simply, it is a comparison of the solubilities of the compound solute in these two immiscible liquids. This property is used to measure the lipophilicity and the hydrophilicity of a substance."^^ . . . "A dimensionless ratio that is the logarithm of the ratio of a compound's concentration within a two phase mixture of octanol and water at equilibrium. More simply, it is a comparison of the solubilities of the compound solute in these two immiscible liquids. This property is used to measure the lipophilicity and the hydrophilicity of a substance." . . "Logarithm of Octanol Water Partition Coefficient"@en . . . "common logarithm of the ratio between the value of a defined variable and the value of a reference variable of the same type"@en . "dekadischer Logarithmus des Verh\u00E4ltnisses des Werts einer gegebenen Gr\u00F6\u00DFe zum Wert einer Bezugsgr\u00F6\u00DFe gleicher Art"@de . . . "0173-1#Z4-BAJ441#002" . . "logarithm ratio to base 10"@en-US . . "napierian logarithm of the ratio between the value of a given quantity and the value of a reference variable of the same type (base of logarithm: e = 2.718...)"@en . . "nat\u00FCrlicher Logarithmus des Verh\u00E4ltnisses des Werts einer gegebenen Gr\u00F6\u00DFe zum Wert einer Bezugsgr\u00F6\u00DFe gleicher Art (Basis des Logarithmus: e = 2,718...)"@de . "0173-1#Z4-BAJ440#002" . . "logarithm ratio to base e"@en-US . . . . . "0112/2///62720#UAD083" . "$G = \\log_{2}(f2/f1)$, where $f1$ and $f2 \\geq f1$ are frequencies of two tones."^^ . "belongs to SOQ-ISO" . . "Frequenzma\u00DFintervall"@de . "Interval m\u011B\u0159en\u00ED frekvence ?"@cs . "Selang kekerapan logaritma"@ms . "intervalle de fr\u00E9quence logarithmique"@fr . "intervallo logaritmico di frequenza"@it . "intervalo logar\u00EDtmico de frequ\u00EAncia"@pt . "logarithmic frequency interval"@en . "logaritmik frekans aral\u0131\u011F\u0131"@tr . "\u0447\u0430\u0441\u0442\u043E\u0442\u043D\u044B\u0439 \u0438\u043D\u0442\u0435\u0440\u0432\u0430\u043B"@ru . "\u0641\u0627\u0635\u0644\u0647 \u0641\u0631\u06A9\u0627\u0646\u0633 \u0644\u06AF\u0627\u0631\u06CC\u062A\u0645\u06CC"@fa . "\u5BF9\u6570\u9891\u7387\u95F4\u9694"@zh . . "common logarithm of the ratio of two frequencies, whereby the frequency that forms the numerator is greater than the frequency that forms the denominator"@en . . "dekadischer Logarithmus des Quotienten aus zwei Frequenzen, wobei die im Z\u00E4hler stehende Frequenz gr\u00F6\u00DFer als die Frequenz im Nenner ist"@de . "0173-1#Z4-BAJ472#001" . . "logarithmic frequency interval to base 10"@en-US . . "ratio of the median information content divided by the expected value for the duration of a character, expressed as a logarithm to base 10"@en . . "Quotient mittlerer Informationsgehalt durch den Erwartungswert f\u00FCr die Dauer eines Zeichens, ausgedr\u00FCckt als Logarithmus zur Basis 10"@de . "0173-1#Z4-BAJ470#001" . . "median information flow (from a source of information), expressed as a common logarithm "@en-US . . "ratio of the median information content divided by the expected value for the duration of a character, expressed as a logarithm to base 2"@en . . "Quotient mittlerer Informationsgehalt durch den Erwartungswert f\u00FCr die Dauer eines Zeichens, ausgedr\u00FCckt als Logarithmus zur Basis 2"@de . "0173-1#Z4-BAJ464#001" . . "median information flow (from a source of information), expressed as a binary logarithm"@en-US . . "ratio of the median information content divided by the expected value for the duration of a character, expressed as a logarithm to base e"@en . . "Quotient mittlerer Informationsgehalt durch den Erwartungswert f\u00FCr die Dauer eines Zeichens, ausgedr\u00FCckt als Logarithmus zur Basis e"@de . "0173-1#Z4-BAJ471#001" . . "median information flow (from a source of information), expressed as a natural logarithm "@en-US . . "\"London Penetration Depth\" characterizes the distance to which a magnetic field penetrates into a superconductor and becomes equal to 1/e times that of the magnetic field at the surface of the superconductor."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/London_penetration_depth"^^ . "If an applied magnetic field is parallel to the plane surface of a semi-infinite superconductor, the field penetrates the superconductor according to the expression $B(x) = B(0) \\exp{(\\frac{-x}{\\lambda_L})}$, where $B$ is magnetic flux density and $x$ is the distance from the surface."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"London Penetration Depth\" characterizes the distance to which a magnetic field penetrates into a superconductor and becomes equal to 1/e times that of the magnetic field at the surface of the superconductor." . "\u03BB\u2097" . . "London Penetration Depth"@en . . . "\"Long-Range Order Parameter\" is the fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Long-Range Order Parameter\" is the fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction." . "R, s" . . "Long-Range Order Parameter"@en . . "\"Lorenz Coefficient\" is part mof the Lorenz curve."^^ . . . "0112/2///62720#UAD087" . "http://www.matter.org.uk/diffraction/geometry/lattice_vectors.htm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$L = \\frac{\\lambda}{\\sigma T}$, where $\\lambda$ is thermal conductivity, $\\sigma$ is electric conductivity, and $T$ is thermodynamic temperature."^^ . "\"Lorenz Coefficient\" is part mof the Lorenz curve." . "L" . . "Lorenz Coefficient"@en . . . . . . . . . . . . . . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\delta = \\arctan d$, where $d$ is loss factor."^^ . "$\\delta$"^^ . . "Loss Angle"@en . . . "\"Loss Factor} is the inverse of \\textit{Quality Factor} and is the ratio of the \\textit{resistance} and modulus of \\textit{reactance\"."^^ . . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$d = \\frac{1}{Q}$, where $Q$ is quality factor."^^ . "\"Loss Factor} is the inverse of \\textit{Quality Factor} and is the ratio of the \\textit{resistance} and modulus of \\textit{reactance\"." . "d" . . "Loss Factor"@en . . . . . "measure of the subjective hearing sensation on a scale extending from soft to loud; a progressive mono-frequency (single-frequency) wave of frequency 1 kHz and sound pressure level 40 dB, directed head-on to hearers is assigned the loudness 1 sone, and a tone which is identified by the listeners as being n-times as loud as that identified by 1 sone is assigned the loudness n sone"@en . . "0112/2///62720#UAD088" . "Ma\u00DF f\u00FCr die St\u00E4rke der subjektiven H\u00F6rempfindung, welche auf einer Skala \"leise-laut\" in sone skaliert wird; einer frei fortschreitenden monofrequenten Welle mit der Frequenz 1 kHz und dem Schalldruckpegel 40 dB, die frontal auf die Zuh\u00F6rer trifft, ist die Lautheit 1 sone zugeordnet und ein Laut, welcher von den Zuh\u00F6rern als n-mal so laut wie derjenige mit 1 sone bezeichnet wird, erh\u00E4lt die Lautheit n sone zugeordnet"@de . "0173-1#Z4-BAJ334#002" . . "loudness" . "loudness"@en-US . . "value specified in phon as a measure of the level of the subjective perception of a sound which corresponds to the sound pressure level of a reference sound specified in dB which comprises a wave coming from the front with a frequency of 1000 Hz and assessed to be just as loud as the noise"@en . . "0112/2///62720#UAD089" . "in phon angegebener Wert als Ma\u00DF f\u00FCr die St\u00E4rke der subjektiven Wahrnehmung eines Schallvorgange, der zahlenm\u00E4\u00DFig dem in dB angegebenen Schalldruckpegel eines Referenzschalls entspricht, der aus einer frontal einfallenden ebenen Welle mit der Frequenz 1000 Hz besteht und als gleich laut wie das Ger\u00E4usch empfunden wird"@de . "0173-1#Z4-BAJ361#002" . . "loudness level" . "loudness level"@en-US . . "\"Lower Critical Magnetic Flux Density\" for type II superconductors, is the threshold magnetic flux density for magnetic flux entering the superconductor."^^ . . . . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Lower Critical Magnetic Flux Density\" for type II superconductors, is the threshold magnetic flux density for magnetic flux entering the superconductor." . "B_{c1}" . . "Lower Critical Magnetic Flux Density"@en . . . . "Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through or is emitted from a particular area, and falls within a given solid angle."^^ . . . . . . . . . "http://dbpedia.org/resource/Luminance"^^ . . "0112/2///62720#UAD090" . "http://en.wikipedia.org/wiki/Luminance"^^ . "$L_v = \\frac{dI_v}{dA}$, where $dI_v$ is the luminous intensity of an element of the surface with the area $dA$ of the orthogonal projection of this element on a plane perpendicular to the given direction."^^ . "Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through or is emitted from a particular area, and falls within a given solid angle." . . "L_v" . . "Luminance"@en . . "Luminous Efficacy is the ratio of luminous flux (in lumens) to power (usually measured in watts). Depending on context, the power can be either the radiant flux of the source's output, or it can be the total electric power consumed by the source."^^ . . "$lm/w$"^^ . . "0112/2///62720#UAD091" . "http://en.wikipedia.org/wiki/Luminous_efficacy"^^ . "$K = \\frac{\\Phi_v}{\\Phi}$, where $\\Phi_v$ is the luminous flux and $\\Phi$ is the corresponding radiant flux."^^ . "Luminous Efficacy is the ratio of luminous flux (in lumens) to power (usually measured in watts). Depending on context, the power can be either the radiant flux of the source's output, or it can be the total electric power consumed by the source." . . "Luminous Efficacy"@en . . "\"Luminous Emittance\" is the luminous flux per unit area emitted from a surface."^^ . . . . . "0112/2///62720#UAD092" . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Luminous Emittance\" is the luminous flux per unit area emitted from a surface." . "M_v" . . "Luminous Emmitance"@en . . . "Luminous Energy is the perceived energy of light. This is sometimes also called the quantity of light."^^ . . . . "0112/2///62720#UAD373" . "http://en.wikipedia.org/wiki/Luminous_energy"^^ . "$Q_v = \\int_{0}^{\\Delta t}{\\Phi_v}{dt}$, where $\\Phi_v$ is the luminous flux occurring during the time interval with duration $\\Delta t$."^^ . "Luminous Energy is the perceived energy of light. This is sometimes also called the quantity of light." . "Q_v" . "Qv" . . "Luminous Energy"@en . . . "ratio of the luminous flux d\u03A6, leaving an element of the surface containing the point, by the area dA of that element"@en . . "Quotient aus dem Lichtstrom d\u03A6, der ein den Punkt enthaltendes Element der Oberfl\u00E4che verl\u00E4sst, und der Fl\u00E4che dA dieses Elementes"@de . "0173-1#Z4-BAJ382#002" . . "luminous exitance"@en-US . . "Luminous Exposure is the time-integrated illuminance."^^ . . . . "0112/2///62720#UAD093" . "http://en.wikipedia.org/wiki/Luminous_energy"^^ . "https://en.wikipedia.org/wiki/Exposure_(photography)#Photometric_and_radiometric_exposure"^^ . "Luminous Exposure is the time-integrated illuminance." . "H_v" . "Hv" . . "Luminous Exposure"@en . . "Luminous Flux or Luminous Power is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of light emitted, in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light."^^ . . "http://dbpedia.org/resource/Luminous_flux"^^ . . "0112/2///62720#UAD094" . "http://en.wikipedia.org/wiki/Luminous_flux"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\Phi_v = K_m \\int_{0}^{\\infty}{\\Phi_\\lambda(\\lambda)}{V(\\lambda)d\\lambda}$, where $K_m$ is the maximum spectral luminous efficacy, $\\Phi_\\lambda(\\lambda)$ is the spectral radiant flux, $V(\\lambda)$ is the spectral luminous efficiency, and $\\lambda$ is the wavelength."^^ . "Luminous Flux or Luminous Power is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of light emitted, in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light." . . "F" . . "Fluks berluminositi"@ms . "Lichtstrom"@de . "Sv\u011Bteln\u00FD tok"@cs . "fluct\u00FAs lucis"@la . "flujo luminoso"@es . "flusso luminoso"@it . "flux lumineux"@fr . "flux luminos"@ro . "fluxo luminoso"@pt . "f\u00E9ny\u00E1ram"@hu . "i\u015F\u0131k ak\u0131s\u0131"@tr . "luminous flux"@en . "strumie\u0144 \u015Bwietlny"@pl . "svetlobni tok"@sl . "\u0421\u0432\u0435\u0442\u043B\u0438\u043D\u0435\u043D \u043F\u043E\u0442\u043E\u043A"@bg . "\u0421\u0432\u0435\u0442\u043E\u0432\u043E\u0439 \u043F\u043E\u0442\u043E\u043A"@ru . "\u05E9\u05D8\u05E3 \u05D4\u05D0\u05E8\u05D4"@he . "\u0627\u0644\u062A\u062F\u0641\u0642 \u0627\u0644\u0636\u0648\u0626\u064A"@ar . "\u0634\u0627\u0631 \u0646\u0648\u0631\u06CC"@fa . "\u092A\u094D\u0930\u0915\u093E\u0936\u0940\u092F \u092C\u0939\u093E\u0935"@hi . "\u5149\u675F"@ja . "\u5149\u901A\u91CF"@zh . . "In photometry, illuminance is the total luminous flux incident on a surface, per unit area. It is a measure of how much the incident light illuminates the surface, wavelength-weighted by the luminosity function to correlate with human brightness perception. Similarly, luminous emittance is the luminous flux per unit area emitted from a surface. In SI derived units these are measured in $lux (lx)$ or $lumens per square metre$ ($cd \\cdot m^{-2}$). In the CGS system, the unit of illuminance is the $phot$, which is equal to $10,000 lux$. The $foot-candle$ is a non-metric unit of illuminance that is used in photography."^^ . . . . . "http://en.wikipedia.org/wiki/Illuminance"^^ . . "Luminous Flux per Area"@en . . "Luminous Flux Ratio (or Relative Luminous Flux or Relative Luminous Power) is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of light emitted, in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light. It is expressed as a percentage or fraction of full power."^^ . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Luminous_flux"^^ . "Luminous Flux Ratio (or Relative Luminous Flux or Relative Luminous Power) is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of light emitted, in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light. It is expressed as a percentage or fraction of full power." . . . . "Luminous Flux Ratio"@en . . . "Luminous Intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. The weighting is determined by the luminosity function, a standardized model of the sensitivity of the human eye to different wavelengths."^^ . . . . . . . "http://dbpedia.org/resource/Luminous_intensity"^^ . . "0112/2///62720#UAD095" . "Luminous Intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. The weighting is determined by the luminosity function, a standardized model of the sensitivity of the human eye to different wavelengths." . . "J" . . "Keamatan berluminositi"@ms . "Lichtst\u00E4rke"@de . "Sv\u00EDtivost"@cs . "f\u00E9nyer\u0151ss\u00E9g"@hu . "intensidad luminosa"@es . "intensidade luminosa"@pt . "intensitas luminosa"@la . "intensitate luminoas\u0103"@ro . "intensit\u00E0 luminosa"@it . "intensit\u00E9 lumineuse"@fr . "luminous intensity"@en . "svetilnost"@sl . "\u0131\u015F\u0131k \u015Fiddeti"@tr . "\u015Bwiat\u0142o\u015B\u0107"@pl . "\u0388\u03BD\u03C4\u03B1\u03C3\u03B7 \u03A6\u03C9\u03C4\u03B5\u03B9\u03BD\u03CC\u03C4\u03B7\u03C4\u03B1\u03C2"@el . "\u0418\u043D\u0442\u0435\u043D\u0437\u0438\u0442\u0435\u0442 \u043D\u0430 \u0441\u0432\u0435\u0442\u043B\u0438\u043D\u0430\u0442\u0430"@bg . "\u0421\u0438\u043B\u0430 \u0441\u0432\u0435\u0442\u0430"@ru . "\u05E2\u05D5\u05E6\u05DE\u05EA \u05D4\u05D0\u05E8\u05D4"@he . "\u0634\u062F\u0629 \u0627\u0644\u0625\u0636\u0627\u0621\u0629"@ar . "\u0634\u062F\u062A \u0646\u0648\u0631"@fa . "\u092A\u094D\u0930\u0915\u093E\u0936\u0940\u092F \u0924\u0940\u0935\u094D\u0930\u0924\u093E"@hi . "\u5149\u5EA6"@ja . "\u53D1\u5149\u5F3A\u5EA6"@zh . . "\"Luminous Intensity Distribution\" is a measure of the luminous intensity of a light source that changes according to the direction of the ray. It is normally based on some standardized distribution light distribution curves. Usually measured in Candela/Lumen (cd/lm) or (cd/klm)."^^ . . . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/link/ifcluminousintensitydistributionmeasure.htm"^^ . "\"Luminous Intensity Distribution\" is a measure of the luminous intensity of a light source that changes according to the direction of the ray. It is normally based on some standardized distribution light distribution curves. Usually measured in Candela/Lumen (cd/lm) or (cd/klm)." . . "Ion Concentration"@en . . "The minimum mass a propulsive system can deliver to a specified target or location. Most mass- delivered requirements have associated Delta-V requirements, effectively specifying the path between the two points."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "The minimum mass a propulsive system can deliver to a specified target or location. Most mass- delivered requirements have associated Delta-V requirements, effectively specifying the path between the two points." . . "Mass Delivered"@en . . . "A factor applied to basic mass at the lowest level of design detail available based on type and maturity of hardware according to an approved MGA depletion schedule."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "A factor applied to basic mass at the lowest level of design detail available based on type and maturity of hardware according to an approved MGA depletion schedule." . . "Mass Growth Allowance"@en . "MGA" . . . "Requirement minus predicted value. Margin is used as a metric in risk management. Positive margin mitigates the risk of mass increases from requirements maturation and implementation, underestimated predicted system, or subsystem mass."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Requirement minus predicted value. Margin is used as a metric in risk management. Positive margin mitigates the risk of mass increases from requirements maturation and implementation, underestimated predicted system, or subsystem mass." . . "Mass Margin"@en . . . "Variation in predicted MP due to lack of definition, manufacturing variations, environment effects, or accuracy limitation of measuring devices."^^ . . "Variation in predicted MP due to lack of definition, manufacturing variations, environment effects, or accuracy limitation of measuring devices." . . "Mass Property Uncertainty"@en . . "The rotational inertia or resistance to change in direction or speed of rotation about a defined axis."^^ . . . . . . . "The rotational inertia or resistance to change in direction or speed of rotation about a defined axis." . "I_{y}" . . "Moment of Inertia in the Y axis"@en . "MOI" . . . "The rotational inertia or resistance to change in direction or speed of rotation about a defined axis."^^ . . . . . . . "The rotational inertia or resistance to change in direction or speed of rotation about a defined axis." . "I_{z}" . . "Moment of Inertia in the Z axis"@en . "MOI" . . . "\"Mach Number\" is a dimensionless quantity representing the speed of an object moving through air or other fluid divided by the local speed of sound. It is commonly used to represent the speed of an object when it is traveling close to or above the speed of sound. The Mach number is commonly used both with objects traveling at high speed in a fluid, and with high-speed fluid flows inside channels such as nozzles, diffusers or wind tunnels. As it is defined as a ratio of two speeds, it is a dimensionless number."^^ . . "http://dbpedia.org/resource/Mach_number"^^ . . "0112/2///62720#UAD364" . "http://en.wikipedia.org/wiki/Mach_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31896"^^ . "$Ma = \\frac{v_o}{c_o}$, where $v_0$ is speed, and $c_o$ is speed of sound."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31896"^^ . "\"Mach Number\" is a dimensionless quantity representing the speed of an object moving through air or other fluid divided by the local speed of sound. It is commonly used to represent the speed of an object when it is traveling close to or above the speed of sound. The Mach number is commonly used both with objects traveling at high speed in a fluid, and with high-speed fluid flows inside channels such as nozzles, diffusers or wind tunnels. As it is defined as a ratio of two speeds, it is a dimensionless number." . . . "Ma" . . "Mach number"@en . "Mach say\u0131s\u0131"@tr . "Mach-Zahl"@de . "Machovo \u010D\u00EDslo"@cs . "Machovo \u0161tevilo"@sl . "Nombor Mach"@ms . "liczba Macha"@pl . "nombre de Mach"@fr . "numero di Mach"@it . "num\u0103r Mach"@ro . "n\u00FAmero de Mach"@es . "n\u00FAmero de Mach"@pt . "\u0447\u0438\u0441\u043B\u043E \u041C\u0430\u0445\u0430"@ru . "\u0639\u062F\u062F \u0645\u0627\u062E"@ar . "\u0639\u062F\u062F \u0645\u0627\u062E"@fa . "\u092E\u0948\u0915 \u0938\u0902\u0916\u094D\u092F\u093E"@hi . "\u30DE\u30C3\u30CF\u6570n"@ja . "\u9A6C\u8D6B"@zh . . . . "\"Macroscopic Cross-section\" is the sum of the cross-sections for a reaction or process of a specified type over all atoms or other entities in a given 3D domain, divided by the volume of that domain."^^ . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Cross_section_(physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\sum = n_1\\sigma_1 + \\cdots + n_j\\sigma_j +$, where $n_j$ is the number density and $\\sigma_j$ the cross-section for entities of type $j$."^^ . "$\\sum$"^^ . "\"Macroscopic Cross-section\" is the sum of the cross-sections for a reaction or process of a specified type over all atoms or other entities in a given 3D domain, divided by the volume of that domain." . . "Macroscopic Cross-section"@en . . . "\"Macroscopic Total Cross-section\" is the total cross-sections for all atoms or other entities in a given 3D domain, divided by the volume of that domain."^^ . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Cross_section_(physics)"^^ . "http://en.wikipedia.org/wiki/Nuclear_cross_section"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\sum_{tot}, \\sum_T$"^^ . "\"Macroscopic Total Cross-section\" is the total cross-sections for all atoms or other entities in a given 3D domain, divided by the volume of that domain." . . "Macroscopic Total Cross-section"@en . . . "\"Madelung Constant\" is used in determining the electrostatic potential of a single ion in a crystal by approximating the ions by point charges. It is named after Erwin Madelung, a German physicist."^^ . . . "http://en.wikipedia.org/wiki/Madelung_constant"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "For a uni-univalent ionic crystal of specified structure, the binding energy $V_b$ per pair of ions is $V_b = \\alpha\\frac{e^2}{4\\pi \\varepsilon_0 a}$, where $e$ is the elementary charge, $\\varepsilon_0$ is the electric constant, and $a$ is the lattice constant which should be specified."^^ . "$\\alpha$"^^ . "\"Madelung Constant\" is used in determining the electrostatic potential of a single ion in a crystal by approximating the ions by point charges. It is named after Erwin Madelung, a German physicist." . . "Constante de Madelung"@es . "Constante de Madelung"@fr . "Costante di Madelung"@it . "Madelung constant"@en . "Madelung-Konstante"@de . "Sta\u0142a Madelunga"@pl . "constante de Madelung"@pt . "\u043F\u043E\u0441\u0442\u043E\u044F\u043D\u043D\u0430\u044F \u041C\u0430\u0434\u0435\u043B\u0443\u043D\u0433\u0430"@ru . "\u062B\u0627\u0628\u062A \u0645\u0627\u062F\u0644\u0648\u0646\u0643"@ar . "\u062B\u0627\u0628\u062A \u0645\u0627\u062F\u0644\u0648\u0646\u06AF"@fa . "\u30DE\u30FC\u30C7\u30EB\u30F3\u30B0\u30A8\u30CD\u30EB\u30AE\u30FC"@ja . "\u99AC\u5FB7\u9686\u5E38\u6578"@zh . . "\"Magnetic Area Moment\", for a magnetic dipole, is a vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation. \"Magnetic Area Moment\" is also referred to as \"Magnetic Moment\"."^^ . . . . . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-49"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$m = I e_n A$, where $I$ is electric current in a small closed loop, $e_n$ is a unit vector perpendicular to the loop, and $A$ is the area of the loop. The magnetic moment of a substance within a domain is the vector sum of the magnetic moments of all entities included in the domain."^^ . "\"Magnetic Area Moment\", for a magnetic dipole, is a vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation. \"Magnetic Area Moment\" is also referred to as \"Magnetic Moment\"." . "m" . . "Magnetic Area Moment"@en . . "\"Magnetic Dipole Moment\" is the magnetic moment of a system is a measure of the magnitude and the direction of its magnetism. Magnetic moment usually refers to its Magnetic Dipole Moment, and quantifies the contribution of the system's internal magnetism to the external dipolar magnetic field produced by the system (that is, the component of the external magnetic field that is inversely proportional to the cube of the distance to the observer). The Magnetic Dipole Moment is a vector-valued quantity. For a particle or nucleus, vector quantity causing an increment $\\Delta W = -\\mu \\cdot B$ to its energy $W$ in an external magnetic field with magnetic flux density $B$."^^ . . . . "0112/2///62720#UAD096" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-55"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "https://www.simetric.co.uk/siderived.htm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$E_m = -m \\cdot B$, where $E_m$ is the interaction energy of the molecule with magnetic diploe moment $m$ and a magnetic field with magnetic flux density $B$\n\nor,\n\n$J_m = \\mu_0 M$ where $\\mu_0$ is the magnetic constant and $M$ is Magnetization."^^ . "$\\mu$"^^ . "J_m" . . "Magnetic Dipole Moment"@en . . "Em = -m\u2022B, where Em is the interaction energy of the molecule with the magnetic dipole moment m and a magnetic field with the magnetic induced flux density B"@en . . "Em = -m\u2022B, wobei Em die Interaktionsenergie vom Molek\u00FCl ist mit dem magnetischem Dipolmoment m und einem Magnetfeld mit der magnetischen Induktionsflussdichte B"@de . "0173-1#Z4-BAJ460#001" . . "magnetic dipole moment of a molecule"@en-US . . "The Magnetic Field, denoted $B$, is a fundamental field in electrodynamics which characterizes the magnetic force exerted by electric currents. It is closely related to the auxillary magnetic field H (see quantitykind:AuxillaryMagneticField)."^^ . . . . . . "B" . . "Magnetic Field"@en . . "\\(\\textbf{Magnetic Field Strength}\\) is a vector quantity obtained at a given point by subtracting the magnetization \\(M\\) from the magnetic flux density \\(B\\) divided by the magnetic constant \\(\\mu_0\\). The magnetic field strength is related to the total current density \\(J_{tot}\\) via: \\(\\text{rot} H = J_{tot}\\)."^^ . . . . . . . . . . . "0112/2///62720#UAD098" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-56"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\mathbf{H} = \\frac{\\mathbf{B} }{\\mu_0} - M$, where $\\mathbf{B} $ is magnetic flux density, $\\mu_0$ is the magnetic constant and $M$ is magnetization."^^ . "$\\mathbf{H} $"^^ . . . "C\u00E2mp magnetic"@ro . "Kekuatan medan magnetik"@ms . "Magnetick\u00E9 pole"@cs . "Manyetik alan"@tr . "intensidad de campo magn\u00E9tico"@es . "intensidade de campo magn\u00E9tico"@pt . "intensit\u00E0 di campo magnetico"@it . "intensit\u00E9 de champ magn\u00E9tique"@fr . "jakost magnetnega polja"@sl . "magnetic field strength"@en . "magnetische Feldst\u00E4rke"@de . "pole magnetyczne"@pl . "\u041C\u0430\u0433\u043D\u0438\u0442\u043D\u043E\u0435 \u043F\u043E\u043B\u0435"@ru . "\u062D\u0642\u0644 \u0645\u063A\u0646\u0627\u0637\u064A\u0633\u064A"@ar . "\u0634\u062F\u062A \u0645\u06CC\u062F\u0627\u0646 \u0645\u063A\u0646\u0627\u0637\u06CC\u0633\u06CC"@fa . "\u78C1\u5834"@ja . "\u78C1\u5834"@zh . . . "\"Magnetic Flux\" is the product of the average magnetic field times the perpendicular area that it penetrates."^^ . . . . . . . . . "http://dbpedia.org/resource/Magnetic_flux"^^ . "$magnetic-flux$"^^ . . "0112/2///62720#UAD099" . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "http://www.oxfordreference.com/view/10.1093/acref/9780199233991.001.0001/acref-9780199233991-e-1800"^^ . "$\\Phi = \\int_S B \\cdot e_n d A$, over a surface $S$, where $B$ is magnetic flux density and $e_n dA$ is the vector surface element."^^ . "$\\Phi$"^^ . "$\\phi$"^^ . "\"Magnetic Flux\" is the product of the average magnetic field times the perpendicular area that it penetrates." . . "Fluks magnet"@ms . "Flux d'induction magn\u00E9tique"@fr . "Magnetick\u00FD tok"@cs . "flujo magn\u00E9tico"@es . "flusso magnetico"@it . "flux de induc\u021Bie magnetic\u0103"@ro . "fluxo magn\u00E9tico"@pt . "fluxus magneticus"@la . "magnetic flux"@en . "magnetischer Flux"@de . "magnetni pretok"@sl . "manyetik ak\u0131"@tr . "m\u00E1gneses fluxus"@hu . "strumie\u0144 magnetyczny"@pl . "\u041C\u0430\u0433\u043D\u0438\u0442\u0435\u043D \u043F\u043E\u0442\u043E\u043A"@bg . "\u041C\u0430\u0433\u043D\u0438\u0442\u043D\u044B\u0439 \u043F\u043E\u0442\u043E\u043A"@ru . "\u05E9\u05D8\u05E3 \u05DE\u05D2\u05E0\u05D8\u05D9"@he . "\u0627\u0644\u062A\u062F\u0641\u0642 \u0627\u0644\u0645\u063A\u0646\u0627\u0637\u064A\u0633\u064A"@ar . "\u0634\u0627\u0631 \u0645\u063A\u0646\u0627\u0637\u06CC\u0633\u06CC"@fa . "\u091A\u0941\u092E\u094D\u092C\u0915\u0940\u092F \u092C\u0939\u093E\u0935"@hi . "\u78C1\u675F"@ja . "\u78C1\u901A\u91CF"@zh . . "\"Magnetic Flux Density\" is a vector quantity and is the magnetic flux per unit area of a magnetic field at right angles to the magnetic force. It can be defined in terms of the effects the field has, for example by $B = F/q v \\sin \\theta$, where $F$ is the force a moving charge $q$ would experience if it was travelling at a velocity $v$ in a direction making an angle \u03B8 with that of the field. The magnetic field strength is also a vector quantity and is related to $B$ by: $H = B/\\mu$, where $\\mu$ is the permeability of the medium."^^ . . . . . . . . . . . . "0112/2///62720#UAD100" . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "http://www.oxfordreference.com/view/10.1093/acref/9780199233991.001.0001/acref-9780199233991-e-1798"^^ . "$\\mathbf{F} = qv \\times B$, where $F$ is force and $v$ is velocity of any test particle with electric charge $q$."^^ . "B" . . "Densidad de flujo magn\u00E9tico"@es . "Densit\u00E9 de flux magn\u00E9tique"@fr . "Ketumpatan fluks magnet"@ms . "Magnetick\u00E1 indukce"@cs . "densidade de fluxo magn\u00E9tico"@pt . "densitas fluxus magnetici"@la . "densit\u00E0 di flusso magnetico"@it . "gostota magnetnega pretoka"@sl . "induc\u021Bie magnetic\u0103"@ro . "indukcja magnetyczna"@pl . "magnetic flux density"@en . "magnetische Flussdichte"@de . "manyetik ak\u0131 yo\u011Funlu\u011Fu"@tr . "m\u00E1gneses indukci\u00F3"@hu . "\u041C\u0430\u0433\u043D\u0438\u0442\u043D\u0430 \u0438\u043D\u0434\u0443\u043A\u0446\u0438\u044F"@bg . "\u041C\u0430\u0433\u043D\u0438\u0442\u043D\u0430\u044F \u0438\u043D\u0434\u0443\u043A\u0446\u0438\u044F"@ru . "\u05E6\u05E4\u05D9\u05E4\u05D5\u05EA \u05E9\u05D8\u05E3 \u05DE\u05D2\u05E0\u05D8\u05D9"@he . "\u0627\u0644\u0645\u062C\u0627\u0644 \u0627\u0644\u0645\u063A\u0646\u0627\u0637\u064A\u0633\u064A"@ar . "\u0686\u06AF\u0627\u0644\u06CC \u0634\u0627\u0631 \u0645\u063A\u0646\u0627\u0637\u06CC\u0633\u06CC"@fa . "\u091A\u0941\u092E\u094D\u092C\u0915\u0940\u092F \u0915\u094D\u0937\u0947\u0924\u094D\u0930"@hi . "\u78C1\u675F\u5BC6\u5EA6"@ja . "\u78C1\u901A\u91CF\u5BC6\u5EA6"@zh . . "inducci\u00F3n magn\u00E9tica"@es . "magnetische Induktion"@de . . "field vector B which exhibits a force F on any charged particle which has a velocity v, where the force is the product of the vector product v x B and the electric charge Q of the particle or vector quantity equal to the product of the magnetization M and the magnetic constant \u00B5\u2080"@en . . "vektorielle Feldgr\u00F6\u00DFe B, die auf jedes geladene Teilchen, das eine Geschwindigkeit v hat, eine Kraft F aus\u00FCbt, die gleich dem Produkt aus dem Vektorprodukt v x B und der elektrischen Ladung Q des Teilchens ist oder vektorielle Gr\u00F6\u00DFe gleich dem Produkt aus der Magnetisierung M und der magnetischen Feldkonstante \u00B5\u2080"@de . "0173-1#Z4-BAJ221#002" . . "magnetic flux density or magnetic polarization"@en-US . . "\"Magnetic Flux per Unit Length\" is a quantity in the SI and C.G.S. Systems of Quantities."^^ . . . . . "\"Magnetic Flux per Unit Length\" is a quantity in the SI and C.G.S. Systems of Quantities." . . "Magnetic flux per unit length"@en . . "\"Magnetic Moment\", for a magnetic dipole, is a vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation. \"Magnetic Moment\" is also referred to as \"Magnetic Area Moment\", and is not to be confused with Magnetic Dipole Moment."^^ . . . . . . . "0112/2///62720#UAD097" . "0112/2///62720#UAD101" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-49"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "https://www.simetric.co.uk/siderived.htm"^^ . "$m = I e_n A$, where $I$ is electric current in a small closed loop, $e_n$ is a unit vector perpendicular to the loop, and $A$ is the area of the loop. The magnetic moment of a substance within a domain is the vector sum of the magnetic moments of all entities included in the domain."^^ . "\"Magnetic Moment\", for a magnetic dipole, is a vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation. \"Magnetic Moment\" is also referred to as \"Magnetic Area Moment\", and is not to be confused with Magnetic Dipole Moment." . "m" . . "Magnetick\u00FD dip\u00F3l"@cs . "Manyetik moment"@tr . "Momen magnetik"@ms . "dipol magnetyczny"@pl . "magnetic moment"@en . "magnetisches Dipolmoment"@de . "moment magn\u00E9tique"@fr . "momento de dipolo magn\u00E9tico"@es . "momento de dipolo magn\u00E9tico"@pt . "momento di dipolo magnetico"@it . "\u041C\u0430\u0433\u043D\u0438\u0442\u043D\u044B\u0439 \u043C\u043E\u043C\u0435\u043D\u0442"@ru . "\u062F\u0648\u0642\u0637\u0628\u06CC \u0645\u063A\u0646\u0627\u0637\u06CC\u0633\u06CC"@fa . "\u0639\u0632\u0645 \u0645\u063A\u0646\u0627\u0637\u064A\u0633\u064A"@ar . "\u091A\u0941\u092E\u094D\u092C\u0915\u0940\u092F \u0926\u094D\u0935\u093F\u0927\u094D\u0930\u0941\u0935"@hi . "\u78C1\u5076\u6781"@zh . "\u78C1\u6C17\u53CC\u6975\u5B50"@ja . "giromagnetic moment"@en . "momen giromagnetik"@ms . "moment giromagn\u00E9tique"@fr . . "\n$\\text{Magnetic Polarization}$ is a vector quantity equal to the product of the magnetization $M$ and the magnetic constant $\\mu_0$.\n "^^ . . "0112/2///62720#UAD102" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-54"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$J_m = \\mu_0 M$, where $\\mu_0$ is the magentic constant and $M$ is magnetization."^^ . "$J_m$"^^ . . "Magnetic Polarization"@en . . . . . "The \"Magnetic Quantum Number\" describes the specific orbital (or \"cloud\") within that subshell, and yields the projection of the orbital angular momentum along a specified axis."^^ . . . "http://en.wikipedia.org/wiki/Quantum_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "The \"Magnetic Quantum Number\" describes the specific orbital (or \"cloud\") within that subshell, and yields the projection of the orbital angular momentum along a specified axis." . "m" . . "Magnetic Quantum Number"@en . . . . . . "\"Length Per Unit Magnetic Flux} is the the resistance of a material to the establishment of a magnetic field in it. It is the reciprocal of \\textit{Magnetic Permeability\", the inverse of the measure of the ability of a material to support the formation of a magnetic field within itself."^^ . . . . "http://en.wikipedia.org/wiki/Permeability_(electromagnetism)"^^ . "\"Length Per Unit Magnetic Flux} is the the resistance of a material to the establishment of a magnetic field in it. It is the reciprocal of \\textit{Magnetic Permeability\", the inverse of the measure of the ability of a material to support the formation of a magnetic field within itself." . . "Magnetic Reluctivity"@en . . . "\"Magnetic Susceptability\" is a scalar or tensor quantity the product of which by the magnetic constant $\\mu_0$ and by the magnetic field strength $H$ is equal to the magnetic polarization $J$. The definition given applies to an isotropic medium. For an anisotropic medium permeability is a second order tensor."^^ . . "$\\kappa = \\frac{M}{H}$"^^ . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-37"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\kappa = \\frac{M}{H}$, where $M$ is magnetization, and $H$ is magnetic field strength."^^ . "$\\kappa$"^^ . . "Magnetic Susceptability"@en . . . . . "\"Magnetic Tension} is a scalar quantity equal to the line integral of the magnetic field strength \\mathbf{H\" along a specified path linking two points a and b."^^ . . . . . . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-57"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$U_m = \\int_{r_a(C)}^{r_b} \\mathbf{H} \\cdot dr$, where $\\mathbf{H}$ is magnetic field strength and $r$ is the position vector along a given curve $C$ from point $a$ to point $b$."^^ . "\"Magnetic Tension} is a scalar quantity equal to the line integral of the magnetic field strength \\mathbf{H\" along a specified path linking two points a and b." . "U_m" . . "Magnetic Tension"@en . . . "\"Magnetic Vector Potential\" is the vector potential of the magnetic flux density. The magnetic vector potential is not unique since any irrotational vector field quantity can be added to a given magnetic vector potential without changing its rotation. Under static conditions the magnetic vector potential is often chosen so that its divergence is zero."^^ . . . . . . "0112/2///62720#UAD103" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-23"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$B = \\text{rot} A$, where $B$ is magnetic flux density."^^ . "\"Magnetic Vector Potential\" is the vector potential of the magnetic flux density. The magnetic vector potential is not unique since any irrotational vector field quantity can be added to a given magnetic vector potential without changing its rotation. Under static conditions the magnetic vector potential is often chosen so that its divergence is zero." . "A" . . "Keupayaan vektor magnetik"@ms . "magnetic vector potential"@en . "magnetick\u00FD potenci\u00E1l"@cs . "magnetisches Potenzial"@de . "manyetik potansiyeli"@tr . "potencial magn\u00E9tico"@es . "potencial magn\u00E9tico"@pt . "potencja\u0142 magnetyczny"@pl . "potentiel magn\u00E9tique"@fr . "potenziale vettore magnetico"@it . "poten\u021Bial magnetic"@ro . "\u041C\u0430\u0433\u043D\u0438\u0442\u043D\u0438\u0439 \u043F\u043E\u0442\u0435\u043D\u0446\u0438\u0430\u043B"@ru . "\u067E\u062A\u0627\u0646\u0633\u06CC\u0644 \u0628\u0631\u062F\u0627\u0631\u06CC \u0645\u063A\u0646\u0627\u0637\u06CC\u0633\u06CC"@fa . "\u78C1\u5411\u91CF\u52BF"@zh . . . "\"Magnetization\" is defined as the ratio of magnetic moment per unit volume. It is a vector-valued quantity."^^ . . . . . . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-52"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$M = dm/dV$, where $m$ is magentic moment of a substance in a domain with Volume $V$."^^ . "\"Magnetization\" is defined as the ratio of magnetic moment per unit volume. It is a vector-valued quantity." . "H_i" . "M" . . "Magnetisierung"@de . "aimantation"@fr . "magnetizaci\u00F3n"@es . "magnetization"@en . "magnetiza\u00E7\u00E3o"@pt . "magnetizzazione"@it . "magnetyzacia"@pl . "\u043D\u0430\u043C\u0430\u0433\u043D\u0438\u0447\u0435\u043D\u043D\u043E\u0441\u0442\u044C"@ru . "\u0645\u063A\u0646\u0637\u0629"@ar . "\u78C1\u5316"@ja . . . "The Magnetization Field is defined as the ratio of magnetic moment per unit volume. It is a vector-valued quantity."^^ . . "The Magnetization Field is defined as the ratio of magnetic moment per unit volume. It is a vector-valued quantity." . "M" . . "Magnetization Field"@en . . . "\n$\\text{Magnetomotive Force}$, also referred to as ($mmf$), is the ability of an electric circuit to produce magnetic flux. \n Just as the ability of a battery to produce electric current is called its electromotive force \n or emf, mmf is taken as the work required to move a unit magnet pole from any point through any path \n which links the electric circuit back the same point in the presence of the magnetic force produced \n by the electric current in the circuit. \n$\\text{Magnetomotive Force}$ is the scalar line integral of the magnetic field strength along a closed path.\n "^^ . . . . . . . . . . "http://dbpedia.org/resource/Magnetomotive_force"^^ . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-60"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$F_m = \\oint \\mathbf{H} \\cdot dr$, where $\\mathbf{H}$ is magnetic field strength and $r$ is position vector along a given curve $C$ from point $a$ to point $b$."^^ . "$F_m $"^^ . . "Magnetomotive Force"@en . . . "In physics, mass, more specifically inertial mass, can be defined as a quantitative measure of an object's resistance to acceleration. The SI unit of mass is the kilogram (\\(kg\\))"^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Mass"^^ . . "0112/2///62720#UAD104" . "http://en.wikipedia.org/wiki/Mass"^^ . . "m" . . "Hmotnost"@cs . "Jisim"@ms . "Masse"@de . "k\u00FCtle"@tr . "masa"@es . "masa"@pl . "masa"@sl . "mass"@en . "massa"@it . "massa"@la . "massa"@pt . "masse"@fr . "mas\u0103"@ro . "t\u00F6meg"@hu . "\u039C\u03AC\u03B6\u03B1"@el . "\u041C\u0430\u0441\u0430"@bg . "\u041C\u0430\u0441\u0441\u0430"@ru . "\u05DE\u05E1\u05D4"@he . "\u062C\u0631\u0645"@fa . "\u0643\u062A\u0644\u0629"@ar . "\u092D\u093E\u0930"@hi . "\u8CEA\u91CF"@ja . "\u8D28\u91CF"@zh . . "The mass absorption coefficient is the linear absorption coefficient divided by the density of the absorber."^^ . . . "http://medical-dictionary.thefreedictionary.com/mass+absorption+coefficient"^^ . "$a_m = \\frac{a}{\\rho}$, where $a$ is the linear absorption coefficient and $\\rho$ is the mass density of the medium."^^ . "$a_m$"^^ . "The mass absorption coefficient is the linear absorption coefficient divided by the density of the absorber." . . "Mass Absorption Coefficient"@en . . . . "Mass Amount of Substance"@en . . . . . "Mass Amount of Substance Temperature"@en . . "\"Mass Attenuation Coefficient\" is a measurement of how strongly a chemical species or substance absorbs or scatters light at a given wavelength, per unit mass."^^ . . . . . . "0112/2///62720#UAD105" . "http://en.wikipedia.org/wiki/Mass_attenuation_coefficient"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\mu_m = \\frac{\\mu}{\\rho}$, where $\\mu$ is the linear attenuation coefficient and $\\rho$ is the mass density of the medium."^^ . "$\\mu_m$"^^ . "\"Mass Attenuation Coefficient\" is a measurement of how strongly a chemical species or substance absorbs or scatters light at a given wavelength, per unit mass." . . "Mass Attenuation Coefficient"@en . . "The \"Mass Concentration\" of substance B is defined as the mass of a constituent divided by the volume of the mixture ."^^ . . . . . . . "http://en.wikipedia.org/wiki/Mass_concentration_(chemistry)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\rho_B = \\frac{m_B}{V}$, where $m_B$ is the mass of substance $B$ and $V$ is the volume."^^ . "$\\rho_B$"^^ . "The \"Mass Concentration\" of substance B is defined as the mass of a constituent divided by the volume of the mixture ." . . . "Mass Concentration"@en . . "\"Mass Concentration of Water Valour} is one of a number of \\textit{Concentration\" quantities defined by ISO 8000."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$w = m/V$, where $m$ is mass of water, irrespective of the form of aggregation, and $V$ is volume. Mass concentration of water at saturation is denoted $w_{sat}$."^^ . "\"Mass Concentration of Water Valour} is one of a number of \\textit{Concentration\" quantities defined by ISO 8000." . "w" . . "Mass Concentration of Water"@en . . "\"Mass Concentration of Water} is one of a number of \\textit{Concentration\" quantities defined by ISO 8000."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$w = m/V$, where $m$ is mass of water vapour and $V$ is total gas volume. Mass concentration of water vapour at saturation is denoted $v_{sat}$."^^ . "\"Mass Concentration of Water} is one of a number of \\textit{Concentration\" quantities defined by ISO 8000." . "v" . . "Mass Concentration of Water Vapour"@en . . "The \"Mass Defect\", also termed mass deficit, or mass packing fraction, describes mass change (decrease) in bound systems, particularly atomic nuclei."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Binding_energy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$B = Zm(^{1}\\textrm{H}) + Nm_n - m_a$, where $Z$ is the proton number of the atom, $m(^{1}\\textrm{H})$ is atomic mass of $^{1}\\textrm{H}$, $N$ is the neutron number, $m_n$ is the rest mass of the neutron, and $m_a$ is the rest mass of the atom."^^ . "The \"Mass Defect\", also termed mass deficit, or mass packing fraction, describes mass change (decrease) in bound systems, particularly atomic nuclei." . "B" . . "Mass Defect"@en . . . "The mass density or density of a material is its mass per unit volume."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "0112/2///62720#UAD106" . "http://en.wikipedia.org/wiki/Density"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\rho = \\frac{dm}{dV}$, where $m$ is mass and $V$ is volume."^^ . "$\\rho$"^^ . "The mass density or density of a material is its mass per unit volume." . . "Gost\u00F4ta"@sl . "Ketumpatan jisim"@ms . "Massendichte"@de . "densidad"@es . "densidade"@pt . "densitate"@ro . "densit\u00E0"@it . "densit\u00E9"@fr . "g\u0119sto\u015B\u0107"@pl . "hustota"@cs . "mass density"@en . "yo\u011Funluk"@tr . "\u043F\u043B\u043E\u0442\u043D\u043E\u0441\u0442\u044C"@ru . "\u0627\u0644\u0643\u062B\u0627\u0641\u0629"@ar . "\u0686\u06AF\u0627\u0644\u06CC"@fa . "\u0918\u0928\u0924\u094D\u0935"@hi . "\u5BC6\u5EA6"@ja . "\u5BC6\u5EA6"@zh . " jisim isipadu"@ms . "massa volumica"@it . "volumenbezogene Masse"@de . "volumic mass"@en . "\u092D\u093E\u0930 \u0918\u0928\u0924\u094D\u0935"@hi . . "\"Mass Energy Transfer Coefficient\" is that fraction of the mass attenuation coefficient which contributes to the production of kinetic energy in charged particles."^^ . . . "http://physics.nist.gov/PhysRefData/XrayMassCoef/chap3.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\frac{\\mu_{tr}}{\\rho} = -\\frac{1}{\\rho}\\frac{1}{R}\\frac{dR_{tr}}{dl}$, where $dR_{tr}$ is the mean energy that is transferred to kinetic energy of charged particles by interactions of the incident radiation $R$ in traversing a distance $dl$ in the material of density $\\rho$."^^ . "$\\frac{\\mu_{tr}}{\\rho}$"^^ . "\"Mass Energy Transfer Coefficient\" is that fraction of the mass attenuation coefficient which contributes to the production of kinetic energy in charged particles." . . "Mass Energy Transfer Coefficient"@en . . "The \"Mass Excess\" of a nuclide is the difference between its actual mass and its mass number in atomic mass units. It is one of the predominant methods for tabulating nuclear mass."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Mass_excess"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\Delta = m_a - Am_u$, where $m_a$ is the rest mass of the atom, $A$ is its nucleon number, and $m_u$ is the unified atomic mass constant."^^ . "$\\Delta$"^^ . "The \"Mass Excess\" of a nuclide is the difference between its actual mass and its mass number in atomic mass units. It is one of the predominant methods for tabulating nuclear mass." . . "Mass Excess"@en . . . "\"Mass Flow Rate\" is a measure of Mass flux. The common symbol is $\\dot{m}$ (pronounced \"m-dot\"), although sometimes $\\mu$ is used. The SI units are $kg s-1$."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Mass_flow_rate"^^ . . "0112/2///62720#UAD107" . "http://en.wikipedia.org/wiki/Mass_flow_rate"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$q_m = \\frac{dm}{dt}$, where $m$ is mass and $t$ is time."^^ . "$\\dot{m}$"^^ . "q_m" . . "Mass Flow Rate"@en . . . "product of flow velocity and density"@en . . "0112/2///62720#UAD108" . "Produkt aus Str\u00F6mungsgeschwindigkeit und Dichte"@de . "0173-1#Z4-BAJ264#003" . . "mass flux density" . "mass flux density"@en-US . . "The \"Mass Fraction\" is the fraction of one substance with mass to the mass of the total mixture ."^^ . . . "http://en.wikipedia.org/wiki/Mass_fraction_(chemistry)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$w_B = \\frac{m_B}{m}$, where $m_B$ is the mass of substance $B$ and $m$ is the total."^^ . "The \"Mass Fraction\" is the fraction of one substance with mass to the mass of the total mixture ." . "w_B" . . "Mass Fraction"@en . . "\"Mass Fraction of Dry Matter} is one of a number of \\textit{Concentration\" quantities defined by ISO 8000."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$w_d= 1 - w_{h2o}$, where $w_{h2o}$ is mass fraction of water."^^ . "\"Mass Fraction of Dry Matter} is one of a number of \\textit{Concentration\" quantities defined by ISO 8000." . "w_d" . . "Mass Fraction of Dry Matter"@en . . . "\"Mass Fraction of Water} is one of a number of \\textit{Concentration\" quantities defined by ISO 8000."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$w_{H_2o} = \\frac{u}{1+u}$, where $u$ is mass ratio of water to dry water."^^ . "\"Mass Fraction of Water} is one of a number of \\textit{Concentration\" quantities defined by ISO 8000." . "w_{H_2o}" . . "Mass Fraction of Water"@en . . . "The \"Mass Number\" (A), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. Nuclides with the same value of $A$ are called isobars."^^ . . . "http://en.wikipedia.org/wiki/Mass_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$A = Z + N$, where $Z$ is the atomic number and $N$ is the neutron number."^^ . "A" . . "Mass Number"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "M_{E}" . . "Mass Of Electrical Power Supply"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "M_{SB}" . . "Mass Of Solid Booster"@en . . . "Earth mass is the unit of mass equal to that of the Earth. Earth mass is often used to describe masses of rocky terrestrial planets."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "$M_{\\oplus}$"^^ . "Earth mass is the unit of mass equal to that of the Earth. Earth mass is often used to describe masses of rocky terrestrial planets." . . "Mass Of The Earth"@en . . . "The area density (also known as areal density, surface density, or superficial density) of a two-dimensional object is calculated as the mass per unit area. The SI derived unit is: kilogram per square metre ($kg \\cdot m^{-2}$)."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Area_density"^^ . "$\\rho_A = \\frac {m} {A}$"^^ . "$\\rho_A $"^^ . . "Mass per Area"@en . . "In Physics and Engineering, mass flux is the rate of mass flow per unit area. The common symbols are $j$, $J$, $\\phi$, or $\\Phi$ (Greek lower or capital Phi), sometimes with subscript $m$ to indicate mass is the flowing quantity. Its SI units are $ kg s^{-1} m^{-2}$."^^ . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Mass_flux"^^ . "$j_m = \\lim\\limits_{A \\rightarrow 0}\\frac{I_m}{A}$"^^ . . "Mass per Area Time"@en . . "The mass-to-charge ratio ratio ($m/Q$) is a physical quantity that is widely used in the electrodynamics of charged particles, for example, in electron optics and ion optics. The importance of the mass-to-charge ratio, according to classical electrodynamics, is that two particles with the same mass-to-charge ratio move in the same path in a vacuum when subjected to the same electric and magnetic fields. Its SI units are $kg/C$, but it can also be measured in Thomson ($Th$)."^^ . . . "http://en.wikipedia.org/wiki/Mass-to-charge_ratio"^^ . . "Mass per Electric Charge"@en . . "Mass per Energy ($m/E$) is a physical quantity that bridges mass and energy. The SI unit is $kg/J$ or equivalently $s^2/m^2$."^^ . . . . . . . . . . . . . . . . . . . . "Mass per Energy is a physical quantity that can be used to relate the energy of a system to its mass." . . "Mass per Energy"@en . . "Linear density, linear mass density or linear mass is a measure of mass per unit of length, and it is a characteristic of strings or other one-dimensional objects. The SI unit of linear density is the kilogram per metre ($kg/m$)."^^ . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Linear_density"^^ . "$\\mu$"^^ . . "Mass per Length"@en . . . . . . . . . . . . . . . "Mass per Time"@en . . "In aerospace engineering, mass ratio is a measure of the efficiency of a rocket. It describes how much more massive the vehicle is with propellant than without; that is, it is the ratio of the rocket's wet mass (vehicle plus contents plus propellant) to its dry mass (vehicle plus contents)"^^ . . . . . . . . . . . . . . "0112/2///62720#UAD109" . "In aerospace engineering, mass ratio is a measure of the efficiency of a rocket. It describes how much more massive the vehicle is with propellant than without; that is, it is the ratio of the rocket's wet mass (vehicle plus contents plus propellant) to its dry mass (vehicle plus contents)" . "R or M_{R}" . . "Mass Ratio"@en . . "\"Mass Ratio of Water to Dry Matter} is one of a number of \\textit{Concentration Ratio\" quantities defined by ISO 8000."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$u = m/m_d$, where $m$ is mass of water vapour and $m_d$ is mass of dry matter. Mass ratio of water to dry matter at saturation is denoted $u_{sat}$."^^ . "\"Mass Ratio of Water to Dry Matter} is one of a number of \\textit{Concentration Ratio\" quantities defined by ISO 8000." . "u" . . "Mass Concentration of Water To Dry Matter"@en . . "\"Mass Ratio of Water Vapour to Dry Gas} is one of a number of \\textit{Concentration Ratio\" quantities defined by ISO 8000."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$x = m/m_d$, where $m$ is mass of water vapour and $m_d$ is mass of dry gas. Mass ratio of water vapour to dry gas at saturation is denoted $x_{sat}$."^^ . "\"Mass Ratio of Water Vapour to Dry Gas} is one of a number of \\textit{Concentration Ratio\" quantities defined by ISO 8000." . "x" . . "Mass Ratio of Water Vapour to Dry Gas"@en . . "electrical current intensity divided by the associated mass"@en . . "elektrische Stromst\u00E4rke dividiert durch die zugeh\u00F6rige Masse"@de . "0173-1#Z4-BAJ347#002" . . "mass-related electrical current"@en-US . . . . "0112/2///62720#UAD130" . "0112/2///62720#UAD290" . . "mass stopping power" . . . . . . . "Mass Temperature"@en . . "\"Massic Activity\" is the activity divided by the total mass of the sample."^^ . . . . . . "0112/2///62720#UAD110" . "http://www.encyclo.co.uk/define/massic%20activity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Massic Activity\" is the activity divided by the total mass of the sample." . "a" . . "Massic Activity"@en . . . . "0112/2///62720#UAD111" . . "massic electric current" . . "ratio of heat capacity divided by mass"@en . . . . "0112/2///62720#UAD112" . "Quotient W\u00E4rmekapazit\u00E4t dividiert durch Masse"@de . "0173-1#Z4-BAJ345#002" . . "massic heat capacity" . "massic heat capacity"@en-US . . "ratio energy divided by time and related mass"@en . . "0112/2///62720#UAD113" . "Quotient Energie durch Zeit und durch zugeh\u00F6riger Masse"@de . "0173-1#Z4-BAJ343#002" . . "massic power" . "massic power"@en-US . . "ratio of torque divided by the mass to be moved"@en . . "0112/2///62720#UAD114" . "Quotient Drehmoment dividiert durch die Masse, die bewegt oder bef\u00F6rdert wird"@de . "0173-1#Z4-BAJ442#002" . . "massic torque" . "massic torque"@en-US . . "The Massieu function, $\\Psi$, is defined as: $\\Psi = \\Psi (X_1, \\dots , X_i, Y_{i+1}, \\dots , Y_r )$, where for every system with degree of freedom $r$ one may choose $r$ variables, e.g. , to define a coordinate system, where $X$ and $Y$ are extensive and intensive variables, respectively, and where at least one extensive variable must be within this set in order to define the size of the system. The $(r + 1)^{th}$ variable,$\\Psi$ , is then called the Massieu function."^^ . . "http://en.wikipedia.org/wiki/Massieu_function"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$J = -A/T$, where $A$ is Helmholtz energy and $T$ is thermodynamic temperature."^^ . "J" . . "Massieu Function"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Maximum Expected Operating Thrust"@en . "MEOT" . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Max Operating Thrust"@en . "MOT" . . . . . . . . . . . . . . . . . . . . . . . . . . . "Max Sea Level thrust (Mlbf) " . . "Max Sea Level Thrust"@en . . . "\"Maximum Beta-Particle Energy\" is the maximum energy of the energy spectrum in a beta-particle disintegration process."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Maximum Beta-Particle Energy\" is the maximum energy of the energy spectrum in a beta-particle disintegration process." . "E\u1D66" . . "Maximum Beta-Particle Energy"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Maximum Expected Operating Pressure"@en . "MEOP" . . . "MOP" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Maximum Operating Pressure"@en . . . "The \"Mean Energy Imparted\", is the average energy imparted to irradiated matter."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.answers.com/topic/energy-imparted"^^ . "To the matter in a given domain, $\\bar{\\varepsilon} = R_{in} - R_{out} + \\sum Q$, where $R_{in}$ is the radiant energy of all those charged and uncharged ionizing particles that enter the domain, $R_{out}$ is the radiant energy of all those charged and uncharged ionizing particles that leave the domain, and $\\sum Q$ is the sum of all changes of the rest energy of nuclei and elementary particles that occur in that domain."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Mean Energy Imparted\", is the average energy imparted to irradiated matter." . "\u03B5\u0305" . . "Mean Energy Imparted"@en . . . "\"Mean Free Path\" is the average distance travelled by a moving particle (such as an atom, a molecule, a photon) between successive impacts (collisions) which modify its direction or energy or other particle properties."^^ . "m" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Mean_free_path"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Mean Free Path\" is the average distance travelled by a moving particle (such as an atom, a molecule, a photon) between successive impacts (collisions) which modify its direction or energy or other particle properties." . "\u03BB" . . "Mean Free Path"@en . . . "The \"Mean Lifetime\" is the average length of time that an element remains in the set of discrete elements in a decaying quantity, $N(t)$."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Exponential_decay"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\tau = \\frac{1}{\\lambda}$, where $\\lambda$ is the decay constant."^^ . "$\\tau$"^^ . . "Mean Lifetime"@en . . . "\"Mean Linear Range\" is, in a given material, for specified charged particles of a specified energy, the average displacement of the particles before they stop. That is, the mean totl rectified path length travelled by a particle in the course of slowing down to rest (or to some suitable cut-off energy) in a given substance under specified conditions averaged over a group of particles having the same initial energy."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://goldbook.iupac.org/M03782.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Mean Linear Range\" is, in a given material, for specified charged particles of a specified energy, the average displacement of the particles before they stop. That is, the mean totl rectified path length travelled by a particle in the course of slowing down to rest (or to some suitable cut-off energy) in a given substance under specified conditions averaged over a group of particles having the same initial energy." . "R" . . "Mean Linear Range"@en . . . "\"Mean Mass Range\" is the mean linear range multiplied by the mass density of the material."^^ . . . . . . . "http://goldbook.iupac.org/M03783.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$R_\\rho = R\\rho$, where $R$ is the mean linear range and $\\rho$ is the mass density of the sample."^^ . "$R_\\rho$"^^ . "\"Mean Mass Range\" is the mean linear range multiplied by the mass density of the material." . . "Mean Mass Range"@en . . "Mechanical Energy is the sum of potential energy and kinetic energy. It is the energy associated with the motion and position of an object."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Mechanical_energy"^^ . . "http://en.wikipedia.org/wiki/Mechanical_energy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$E = T + V$, where $T$ is kinetic energy and $V$ is potential energy."^^ . "Mechanical Energy is the sum of potential energy and kinetic energy. It is the energy associated with the motion and position of an object." . "E" . . "Mechanical Energy"@en . . . . "0112/2///62720#UAD115" . . "Mechanical Impedance"@en . . . . . "Mechanical Mobility"@en . . "Mechanical surface impedance at a surface, is the complex quotient of the total force on the surface by the component of the average sound particle velocity at the surface in the direction of the force"^^ . . "$Z_m = Z_a A^2$, where $A$ is the area of the surface considered and $Z_a$ is the acoustic impedance."^^ . "Mechanical surface impedance at a surface, is the complex quotient of the total force on the surface by the component of the average sound particle velocity at the surface in the direction of the force" . "Z" . "belongs to SOQ-ISO" . "There are various interpretations of MechanicalSurfaceImpedance: Pressure/Velocity - https://apps.dtic.mil/sti/pdfs/ADA315595.pdf, Force / Speed - https://www.wikidata.org/wiki/Q6421317, and (Pressure / Velocity)**0.5 - https://www.sciencedirect.com/topics/engineering/mechanical-impedance. We are seeking a resolution to these differences." . . "Mechanical surface impedance"@en . . "at a point of a body upon which a force acts which attempts to change the shape of the body, the limit value of the ratio between the force and area of a flat surface around this point when the dimensions approach zero"@en . . "an einem Punkt eines K\u00F6rpers, an dem eine Kraft angreift, welche die Form des K\u00F6rpers zu ver\u00E4ndern sucht, der Grenzwert des Quotienten Kraft durch Fl\u00E4che einer ebenen Oberfl\u00E4che um diesen Punkt, wenn deren Abmessungen gegen null gehen"@de . "0173-1#Z4-BAJ204#005" . . "mechanical tension"@en-US . . "A temperature that is the one at which a substance will change its physical state from a solid to a liquid. It is also the temperature where the solid and liquid forms of a pure substance can exist in equilibrium."^^ . . . . . . . . "A temperature that is the one at which a substance will change its physical state from a solid to a liquid. It is also the temperature where the solid and liquid forms of a pure substance can exist in equilibrium." . . "Melting Point Temperature"@en . . . "A \"Micro Canonical Partition Function\" applies to a micro canonical ensemble, in which the system is allowed to exchange heat with the environment at fixed temperature, volume, and a fixed number of particles."^^ . . . "http://en.wikipedia.org/wiki/Microcanonical_ensemble"^^ . "http://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)#Grand_canonical_partition_function"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\Omega = \\sum_r 1$, where the sum is over all quantum states consistent with given energy. volume, external fields, and content."^^ . "$\\Omega$"^^ . "A \"Micro Canonical Partition Function\" applies to a micro canonical ensemble, in which the system is allowed to exchange heat with the environment at fixed temperature, volume, and a fixed number of particles." . . "Micro Canonical Partition Function"@en . . . . . . "Microbial Formation"@en . . "\"Migration Area\" is the sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons."^^ . . . . . . . . . . . . . . . . . . . . . . "http://encyclopedia2.thefreedictionary.com/migration+area"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Migration Area\" is the sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons." . "M^2" . . "Migration Area"@en . . . "\"Migration Length\" is the square root of the migration area."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://encyclopedia2.thefreedictionary.com/migration+area"^^ . "$M = \\sqrt{M^2}$, where $M^2$ is the migration area."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Migration Length\" is the square root of the migration area." . "M" . . "Migration Length"@en . . . "\"Mobility\" characterizes how quickly a particle can move through a metal or semiconductor, when pulled by an electric field. The average drift speed imparted to a charged particle in a medium by an electric field, divided by the electric field strength."^^ . . . "http://en.wikipedia.org/wiki/Electron_mobility"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\mu$"^^ . "\"Mobility\" characterizes how quickly a particle can move through a metal or semiconductor, when pulled by an electric field. The average drift speed imparted to a charged particle in a medium by an electric field, divided by the electric field strength." . . "Beweglichkeit"@de . "mobilidade"@pt . "mobility"@en . "mobilit\u00E0"@it . "mobilit\u00E9"@fr . "mobilno\u015B\u0107"@pl . "movilidad"@es . "\u0642\u0627\u0628\u0644\u064A\u0629 \u0627\u0644\u062A\u062D\u0631\u0643"@ar . "\u79FB\u52D5\u5EA6"@ja . "\u8FC1\u79FB\u7387"@zh . "Mobilit\u00E4t"@de . . "\"MobilityRatio\" describes permeability of a porous material to a given phase divided by the viscosity of that phase."^^ . . . "http://baervan.nmt.edu/research_groups/reservoir_sweep_improvement/pages/clean_up/mobility.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$b = \\frac{\\mu_n}{\\mu_p}$, where $\\mu_n$ and $\\mu_p$ are mobilities for electrons and holes, respectively."^^ . "\"MobilityRatio\" describes permeability of a porous material to a given phase divided by the viscosity of that phase." . "b" . . "Mobility Ratio"@en . . "\"Modulus Of Admittance\" is the absolute value of the quantity \"admittance\"."^^ . . "http://en.wikipedia.org/wiki/Absolute_value"^^ . "http://en.wikipedia.org/wiki/Admittance"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-51"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$Y = \\left | \\underline{Y} \\right |$, where $\\underline{Y}$ is admittance."^^ . "\"Modulus Of Admittance\" is the absolute value of the quantity \"admittance\"." . "Y" . . "Modulus Of Admittance"@en . . . "The Modulus of Elasticity is the mathematical description of an object or substance's tendency to be deformed elastically (that is, non-permanently) when a force is applied to it."^^ . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Elastic_modulus"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$E = \\frac{\\sigma}{\\varepsilon}$, where $\\sigma$ is the normal stress and $\\varepsilon$ is the linear strain."^^ . "The Modulus of Elasticity is the mathematical description of an object or substance's tendency to be deformed elastically (that is, non-permanently) when a force is applied to it." . "E" . . "Modulus of Elasticity"@en . . "\"Modulus Of Impedance} is the absolute value of the quantity \\textit{impedance\". Apparent impedance is defined more generally as\n\nthe quotient of rms voltage and rms electric current; it is often denoted by $Z$."^^ . . . "http://en.wikipedia.org/wiki/Absolute_value"^^ . "http://en.wikipedia.org/wiki/Electrical_impedance"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$Z = \\left | \\underline{Z} \\right |$, where $\\underline{Z}$ is impedance."^^ . "Z" . . "Modulus Of Impedance"@en . . . "Modulus of Linear Subgrade Reaction is a measure for modulus of linear subgrade reaction, which expresses the elastic bedding of a linear structural element per length, such as for a beam. It is typically measured in N/m^2"^^ . . . . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/link/ifcmodulusoflinearsubgradereactionmeasure.htm"^^ . "Modulus of Linear Subgrade Reaction is a measure for modulus of linear subgrade reaction, which expresses the elastic bedding of a linear structural element per length, such as for a beam. It is typically measured in N/m^2" . . "Modulus of Linear Subgrade Reaction"@en . . . "Modulus of Rotational Subgrade Reaction is a measure for modulus of rotational subgrade reaction, which expresses the rotational elastic bedding of a linear structural element per length, such as for a beam. It is typically measured in Nm/(m*rad)."^^ . . . . . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/link/ifcmodulusofrotationalsubgradereactionmeasure.htm"^^ . "Modulus of Rotational Subgrade Reaction is a measure for modulus of rotational subgrade reaction, which expresses the rotational elastic bedding of a linear structural element per length, such as for a beam. It is typically measured in Nm/(m*rad)." . . "Modulus of Rotational Subgrade Reaction"@en . . . "Modulus of Subgrade Reaction is a geotechnical measure describing interaction between foundation structures and the soil. May also be known as bedding measure. Usually measured in N/m3."^^ . . . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/link/ifcmodulusofsubgradereactionmeasure.htm"^^ . "Modulus of Subgrade Reaction is a geotechnical measure describing interaction between foundation structures and the soil. May also be known as bedding measure. Usually measured in N/m3." . . "Modulus of Subgrade Reaction"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "q_V" . . "Moisture Diffusivity"@en . . . "The \"Molality of Solute\" of a solution is defined as the amount of substance of solute divided by the mass in kg of the solvent."^^ . . . . . . . "http://en.wikipedia.org/wiki/Molality"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$b_B = \\frac{n_B}{m_a}$, where $n_B$ is the amount of substance and $m_A$ is the mass."^^ . "The \"Molality of Solute\" of a solution is defined as the amount of substance of solute divided by the mass in kg of the solvent." . "b_B" . . "Molality of Solute"@en . . . "\"Molar Absorption Coefficient\" is a spectrophotometric unit indicating the light a substance absorbs with respect to length, usually centimeters, and concentration, usually moles per liter."^^ . . . . "http://medical-dictionary.thefreedictionary.com/molar+absorption+coefficient"^^ . "$x = aV_m$, where $a$ is the linear absorption coefficient and $V_m$ is the molar volume."^^ . "\"Molar Absorption Coefficient\" is a spectrophotometric unit indicating the light a substance absorbs with respect to length, usually centimeters, and concentration, usually moles per liter." . "x" . . "Molar Absorption Coefficient"@en . . . . "http://cvika.grimoar.cz/callen/callen_21.pdf"^^ . . "Molar Angular Momentum"@en . . "\"Molar Attenuation Coefficient\" is a measurement of how strongly a chemical species or substance absorbs or scatters light at a given wavelength, per amount of substance."^^ . . . . "0112/2///62720#UAD120" . "http://en.wikipedia.org/wiki/Mass_attenuation_coefficient"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\mu_c = -\\frac{\\mu}{c}$, where $\\mu$ is the linear attenuation coefficient and $c$ is the amount-of-substance concentration."^^ . "$\\mu_c$"^^ . "\"Molar Attenuation Coefficient\" is a measurement of how strongly a chemical species or substance absorbs or scatters light at a given wavelength, per amount of substance." . . "Molar Attenuation Coefficient"@en . . . "\"Molar Conductivity\" is the conductivity of an electrolyte solution divided by the molar concentration of the electrolyte, and so measures the efficiency with which a given electrolyte conducts electricity in solution."^^ . . . "0112/2///62720#UAD121" . "http://en.wikipedia.org/wiki/Molar_conductivity"^^ . "http://encyclopedia2.thefreedictionary.com/molar+conductivity"^^ . "$\\Gamma_m = \\frac{x}{c_B}$, where $x$ is the electrolytic conductivity and $c_B$ is the amount-of-substance concentration."^^ . "$\\Gamma_m$"^^ . "\"Molar Conductivity\" is the conductivity of an electrolyte solution divided by the molar concentration of the electrolyte, and so measures the efficiency with which a given electrolyte conducts electricity in solution." . . "Molar Conductivity"@en . . "quantity whose value is inversely proportional to the quantity of material"@en . . "Gr\u00F6\u00DFe, deren Wert sich umgekehrt proportional zu Stoffmengenwert verh\u00E4lt"@de . "0173-1#Z4-BAJ372#002" . . "molar density"@en-US . . "\"Molar Energy\" is the total energy contained by a thermodynamic system. The unit is \\(J/mol\\), also expressed as \\(joule/mole\\), or \\(joules per mole\\). This unit is commonly used in the SI unit system. The quantity has the dimension of \\(M \\cdot L^2 \\cdot T^{-2} \\cdot N^{-1}\\) where \\(M\\) is mass, \\(L\\) is length, \\(T\\) is time, and \\(N\\) is amount of substance."^^ . . . . . "http://www.efunda.com/glossary/units/units-molar_energy-joule_per_mole.cfm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$U_m = \\frac{U}{n}$, where $U$ is internal energy and $n$ is amount of substance."^^ . . "U_M" . "dimensions are wrong" . . "Molar Energy"@en . . "The \"Standard Molar Entropy\" is the entropy content of one mole of substance, under standard conditions (not standard temperature and pressure STP)."^^ . . . "http://en.wikipedia.org/wiki/Standard_molar_entropy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$S_m = \\frac{S}{n}$, where $S$ is entropy and $n$ is amount of substance."^^ . "The \"Standard Molar Entropy\" is the entropy content of one mole of substance, under standard conditions (not standard temperature and pressure STP)." . . "S_m" . . "Molar Entropy"@en . . "Molar Flow Rate is a measure of the amount of substance (the number of molecules) that passes through a given area perpendicular to the flow in a given time. Typically this area is constrained, for example a section through a pipe, but it could also apply to an open flow."^^ . . . . . . . "0112/2///62720#UAD122" . "https://www.sciencedirect.com/topics/engineering/molar-flow-rate"^^ . "Molar Flow Rate is a measure of the amount of substance (the number of molecules) that passes through a given area perpendicular to the flow in a given time. Typically this area is constrained, for example a section through a pipe, but it could also apply to an open flow." . "q_V" . . "Molar Flow Rate"@en . . "\"Molar Heat Capacity\" is the amount of heat energy required to raise the temperature of 1 mole of a substance. In SI units, molar heat capacity (symbol: cn) is the amount of heat in joules required to raise 1 mole of a substance 1 Kelvin."^^ . . . . . "0112/2///62720#UAD123" . "http://chemistry.about.com/od/chemistryglossary/g/Molar-Heat-Capacity-Definition.htm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$C_m = \\frac{C}{n}$, where $C$ is heat capacity and $n$ is amount of substance."^^ . "\"Molar Heat Capacity\" is the amount of heat energy required to raise the temperature of 1 mole of a substance. In SI units, molar heat capacity (symbol: cn) is the amount of heat in joules required to raise 1 mole of a substance 1 Kelvin." . "C_m" . "cn" . . "Molar Heat Capacity"@en . . . "0112/2///62720#UAD124" . . "molar internal energy" . . "In chemistry, the molar mass M is defined as the mass of a given substance (chemical element or chemical compound) divided by its amount of substance. It is a physical property of a given substance. The base SI unit for molar mass is $kg/mol$."^^ . . . . "http://dbpedia.org/resource/Molar_mass"^^ . . "0112/2///62720#UAD125" . "http://en.wikipedia.org/wiki/Molar_mass"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "M" . . "Jisim molar"@ms . "Masa molowa"@pl . "Mas\u0103 molar\u0103"@ro . "Molmasse"@de . "Mol\u00E1rn\u00ED hmotnost"@cs . "masa molar"@es . "massa molar"@pt . "massa molare"@it . "masse molaire"@fr . "molar k\u00FCtle"@tr . "molar mass"@en . "molska masa"@sl . "\u041C\u043E\u043B\u044F\u0440\u043D\u0430\u044F \u043C\u0430\u0441\u0441\u0430"@ru . "\u062C\u0631\u0645 \u0645\u0648\u0644\u06CC"@fa . "\u0643\u062A\u0644\u0629 \u0645\u0648\u0644\u064A\u0629"@ar . "\u092E\u094B\u0932\u0930 \u0926\u094D\u0930\u0935\u094D\u092F\u092E\u093E\u0928"@hi . "\u30E2\u30EB\u8CEA\u91CF"@ja . "\u6469\u5C14\u8D28\u91CF"@zh . "molare Masse"@de . "stoffmengenbezogene Masse"@de . . "material-specific quantity resulting as the specific angle of rotation of a substance for a particular wavelength and a particular temperature from the relationship: ratio between measured angle of rotation divided by the concentration of material and the covered path"@en . . "materialspezifische Gr\u00F6\u00DFe, die sich als spezifischer Drehwinkel einer Substanz f\u00FCr eine bestimmte Wellenl\u00E4nge und eine bestimmte Temperatur ergibt durch die Beziehung: Quotient aus gemessener Drehwinkel dividiert durch die Stoffmenegenkonzentration und die durchstrahlte Wegstrecke"@de . "0173-1#Z4-BAJ426#001" . . "molar optical rotational ability"@en-US . . "The \"Molar Optical Rotatory Power\" Angle of optical rotation divided by the optical path length through the medium and by the amount concentration giving the molar optical rotatory power."^^ . . . "0112/2///62720#UAD126" . "http://goldbook.iupac.org/O04313.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\alpha_n = \\alpha \\frac{A}{n}$, where $\\alpha$ is the angle of optical rotation, and $n$ is the amount of substance of the optically active component in the path of a linearly polarized light beam of cross sectional area $A$."^^ . "$\\alpha_n$"^^ . "The \"Molar Optical Rotatory Power\" Angle of optical rotation divided by the optical path length through the medium and by the amount concentration giving the molar optical rotatory power." . . "Molar Optical Rotatory Power"@en . . "A quantity kind that is a measure of the total polarizability of a mole of substance that depends on the temperature, the index of refraction and the pressure."^^ . . . . . . . "A quantity kind that is a measure of the total polarizability of a mole of substance that depends on the temperature, the index of refraction and the pressure." . . "Molar Refractivity"@en . . "thermal capacity divided by the amount of substance"@en . . "auf die Stoffmenge bezogene W\u00E4rmekapazit\u00E4t"@de . "0173-1#Z4-BAJ355#002" . . "molar thermal capacity"@en-US . . "energy in relation to the amount of a substance"@en . . "auf die Stoffmenge bezogene Energie"@de . "0173-1#Z4-BAJ353#002" . . "molar thermodynamic energy"@en-US . . "The molar volume, symbol $V_m$, is the volume occupied by one mole of a substance (chemical element or chemical compound) at a given temperature and pressure. It is equal to the molar mass ($M$) divided by the mass density ($\\rho$). It has the SI unit cubic metres per mole ($m^{1}/mol$). For ideal gases, the molar volume is given by the ideal gas equation: this is a good approximation for many common gases at standard temperature and pressure. For crystalline solids, the molar volume can be measured by X-ray crystallography."^^ . . . . . . "http://dbpedia.org/resource/Molar_volume"^^ . . "0112/2///62720#UAD127" . "http://en.wikipedia.org/wiki/Molar_volume"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$V_m = \\frac{V}{n}$, where $V$ is volume and $n$ is amount of substance."^^ . "V_m" . . "Isipadu molar"@ms . "Molvolumen"@de . "molar hacim"@tr . "molar volume"@en . "molski volumen"@sl . "mol\u00E1rn\u00ED objem"@cs . "volum molar"@ro . "volume molaire"@fr . "volume molar"@pl . "volume molar"@pt . "volume molare"@it . "volumen molar"@es . "\u041C\u043E\u043B\u044F\u0440\u043D\u044B\u0439 \u043E\u0431\u044A\u0451\u043C"@ru . "\u062D\u062C\u0645 \u0645\u0648\u0644\u064A"@ar . "\u062D\u062C\u0645 \u0645\u0648\u0644\u06CC"@fa . "\u30E2\u30EB\u4F53\u7A4D"@ja . "\u6469\u5C14\u4F53\u79EF"@zh . "molares Volumen"@de . "stoffmengenbezogenes Volumen"@de . . "In chemistry, the mole fraction of a component in a mixture is the relative proportion of molecules belonging to the component to those in the mixture, by number of molecules. It is one way of measuring concentration."^^ . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Mole_fraction"^^ . . "In chemistry, the mole fraction of a component in a mixture is the relative proportion of molecules belonging to the component to those in the mixture, by number of molecules. It is one way of measuring concentration." . . . . "Mole Fraction"@en . . . "The \"Molecular Concentration\" of substance B is defined as the number of molecules of B divided by the volume of the mixture "^^ . "m^{-3}" . . . . . . . . . "http://en.wikipedia.org/wiki/Molar_concentration"^^ . "$C_B = \\frac{N_B}{V}$, where $N_B$ is the number of molecules of $B$ and $V$ is the volume."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "The \"Molecular Concentration\" of substance B is defined as the number of molecules of B divided by the volume of the mixture " . "C_B" . . "Molecular Concentration"@en . . . "The molecular mass, or molecular weight of a chemical compound is the mass of one molecule of that compound, relative to the unified atomic mass unit, u. Molecular mass should not be confused with molar mass, which is the mass of one mole of a substance."^^ . . "http://dbpedia.org/resource/Molecular_mass"^^ . . "http://en.wikipedia.org/wiki/Molecular_mass#Relative_molecular_mass"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "The molecular mass, or molecular weight of a chemical compound is the mass of one molecule of that compound, relative to the unified atomic mass unit, u. Molecular mass should not be confused with molar mass, which is the mass of one mole of a substance." . "M" . . "Molecular Mass"@en . . . "Molecules in a fluid close to a solid boundary sometime strike the boundary and transfer momentum to it. Molecules further from the boundary collide with molecules that have struck the boundary, further transferring the change in momentum into the interior of the fluid. This transfer of momentum is molecular viscosity. Molecules, however, travel only micrometers between collisions, and the process is very inefficient for transferring momentum even a few centimeters. Molecular viscosity is important only within a few millimeters of a boundary. The coefficient of molecular viscosity has the same value as the dynamic viscosity."^^ . . "http://oceanworld.tamu.edu/resources/ocng_textbook/chapter08/chapter08_01.htm"^^ . "Molecules in a fluid close to a solid boundary sometime strike the boundary and transfer momentum to it. Molecules further from the boundary collide with molecules that have struck the boundary, further transferring the change in momentum into the interior of the fluid. This transfer of momentum is molecular viscosity. Molecules, however, travel only micrometers between collisions, and the process is very inefficient for transferring momentum even a few centimeters. Molecular viscosity is important only within a few millimeters of a boundary. The coefficient of molecular viscosity has the same value as the dynamic viscosity." . . "Molecular Viscosity"@en . . . . "Moment of force (often just moment) is the tendency of a force to twist or rotate an object."^^ . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Moment_(physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$M = r \\cdot F$, where $r$ is the position vector and $F$ is the force."^^ . "Moment of force (often just moment) is the tendency of a force to twist or rotate an object." . . "M" . . "Moment of Force"@en . . "The rotational inertia or resistance to change in direction or speed of rotation about a defined axis."^^ . . . . . . . . "0112/2///62720#UAD128" . "http://en.wikipedia.org/wiki/Moment_of_inertia"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$I_Q = \\int r^2_Q dm$, where $r_Q$ is the radial distance from a $Q-axis$ and $m$ is mass."^^ . "The rotational inertia or resistance to change in direction or speed of rotation about a defined axis." . "I" . . "Eylemsizlik momenti"@tr . "Massentr\u00E4gheitsmoment"@de . "Momen inersia"@ms . "Moment bezw\u0142adno\u015Bci"@pl . "Moment de iner\u021Bie"@ro . "Moment setrva\u010Dnosti"@cs . "moment d'inertie"@fr . "moment of inertia"@en . "momento de inercia"@es . "momento de in\u00E9rcia"@pt . "momento di inerzia"@it . "\u041C\u043E\u043C\u0435\u043D\u0442 \u0438\u043D\u0435\u0440\u0446\u0438\u0438"@ru . "\u0639\u0632\u0645 \u0627\u0644\u0642\u0635\u0648\u0631 \u0627\u0644\u0630\u0627\u062A\u064A"@ar . "\u06AF\u0634\u062A\u0627\u0648\u0631 \u0644\u062E\u062A\u06CC"@fa . "\u091C\u0921\u093C\u0924\u094D\u0935\u093E\u0918\u0942\u0930\u094D\u0923"@hi . "\u6163\u6027\u30E2\u30FC\u30E1\u30F3\u30C8"@ja . "\u8F49\u52D5\u6163\u91CF"@zh . "MOI" . . "The momentum of a system of particles is given by the sum of the momentums of the individual particles which make up the system or by the product of the total mass of the system and the velocity of the center of gravity of the system. The momentum of a continuous medium is given by the integral of the velocity over the mass of the medium or by the product of the total mass of the medium and the velocity of the center of gravity of the medium."^^ . . . . . . "http://dbpedia.org/resource/Momentum"^^ . . . "http://en.wikipedia.org/wiki/Momentum"^^ . "The momentum of a system of particles is given by the sum of the momentums of the individual particles which make up the system or by the product of the total mass of the system and the velocity of the center of gravity of the system. The momentum of a continuous medium is given by the integral of the velocity over the mass of the medium or by the product of the total mass of the medium and the velocity of the center of gravity of the medium." . "p" . . "Impuls"@de . "Momentum"@ms . "Momentum"@tr . "cantidad de movimiento"@es . "gibalna koli\u010Dina"@sl . "hybnost"@cs . "impuls"@ro . "momento linear"@pt . "momentum"@en . "p\u0119d"@pl . "quantit\u00E0 di moto"@it . "quantit\u00E9 de mouvement"@fr . "\u0438\u043C\u043F\u0443\u043B\u044C\u0441"@ru . "\u062A\u06A9\u0627\u0646\u0647"@fa . "\u0632\u062E\u0645 \u0627\u0644\u062D\u0631\u0643\u0629"@ar . "\u52A8\u91CF"@zh . "\u904B\u52D5\u91CF"@ja . . . . . "Momentum per Angle"@en . . "Morbidity rate is a measure of the incidence of a disease in a particular population, scaled to the size of that population, per unit of time."^^ . . . "Morbidity rate is a measure of the incidence of a disease in a particular population, scaled to the size of that population, per unit of time." . . . . "Morbidity Rate"@en . . . "Mortality rate, or death rate, is a measure of the number of deaths (in general, or due to a specific cause) in a particular population, scaled to the size of that population, per unit of time."^^ . . . . "https://en.wikipedia.org/wiki/Mortality_rate"^^ . "Mortality rate, or death rate, is a measure of the number of deaths (in general, or due to a specific cause) in a particular population, scaled to the size of that population, per unit of time." . . . . "Mortality Rate"@en . . . "quantitiy/variable which identifies a characteristic of a motor"@en . . "0112/2///62720#UAD129" . "Gr\u00F6\u00DFe, die eine Eigenschaft eines Motors kennzeichnet"@de . "0173-1#Z4-BAJ358#003" . . "motor constant" . "motor constant"@en-US . . "The \"Multiplication Factor\" is the ratio of the total number of fission or fission-dependent neutrons produced in a time interval to the total number of neutrons lost by absorption and leakage during the same interval."^^ . . . "http://en.wikipedia.org/wiki/Neutron_multiplication_factor"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Multiplication Factor\" is the ratio of the total number of fission or fission-dependent neutrons produced in a time interval to the total number of neutrons lost by absorption and leakage during the same interval." . "k" . . "Multiplication Factor"@en . . "$\\textit{Mutual Inductance}$ is the non-diagonal term of the inductance matrix. For two loops, the symbol $M$ is used for $L_{12}$."^^ . . . . . . . . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-36"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$L_{mn} = \\frac{\\Psi_m}{I_n}$, where $I_n$ is an electric current in a thin conducting loop $n$ and $\\Psi_m$ is the linked flux caused by that electric current in another loop $m$."^^ . "L_{mn}" . . "Mutual Inductance"@en . . . . "The amount of propellant mass within a stage that is available for impulse for use in nominal payload performance prediction. This mass excludes loaded propellant that has been set aside for off- nominal performance behavior (FPR and fuel bias)."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://elib.dlr.de/68314/1/IAF10-D2.3.1.pdf"^^ . "The amount of propellant mass within a stage that is available for impulse for use in nominal payload performance prediction. This mass excludes loaded propellant that has been set aside for off- nominal performance behavior (FPR and fuel bias)." . . "Nominal Ascent Propellant Mass"@en . . . "Napierian Absorbance is the natural (Napierian) logarithm of the reciprocal of the spectral internal transmittance."^^ . . . "http://eilv.cie.co.at/term/798"^^ . "$A_e(\\lambda) = -ln(\\tau(\\lambda))$, where $\\tau$ is the transmittance at a given wavelength $\\lambda$."^^ . "Napierian Absorbance is the natural (Napierian) logarithm of the reciprocal of the spectral internal transmittance." . "A_e, B" . . "Napierian Absorbance"@en . . "\"Neel Temperature\" is the critical thermodynamic temperature of an antiferromagnet."^^ . . . . . . . . "http://en.wikipedia.org/wiki/N\u00E9el_temperature"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Neel Temperature\" is the critical thermodynamic temperature of an antiferromagnet." . "T_C" . . "Neel Temperature"@en . . . . . "ratio between two physical variables of the same type, expressed as a number which describes the relationship between these variables where the units are cancelled against each other"@en . . "Quotient aus zwei physikalischen Gr\u00F6\u00DFen gleicher Art als Zahl, welche das Verh\u00E4ltnis dieser Gr\u00F6\u00DFen zueinander ausdr\u00FCckt, wobei die einheiten gegeneinander gek\u00FCrzt sind"@de . "0173-1#Z4-BAJ359#002" . . "neutral ratio"@en-US . . "The \"Diffusion Coefficient\" is "^^ . . . "http://encyclopedia2.thefreedictionary.com/Diffusion+of+Neutrons"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$D_n = -\\frac{J_x}{\\frac{\\partial dn}{\\partial dx}}$, where $J_x$ is the $x-component$ of the particle current and $n$ is the particle number density."^^ . "The \"Diffusion Coefficient\" is " . "D" . . "Diffusionskoeffizient"@de . "coefficient de diffusion"@fr . "coefficiente di diffusione"@it . "coeficiente de difusi\u00F3n"@es . "coeficiente de difus\u00E3o"@pt . "diffusion coefficient"@en . "difuzijski koeficient"@sl . . "The neutron diffusion length is equivalent to the relaxation length, that is, to the distance, in which the neutron flux decreases by a factor e"^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "The neutron diffusion length is equivalent to the relaxation length, that is, to the distance, in which the neutron flux decreases by a factor e" . "L_{r}" . . "Neutron Diffusion Length"@en . . . "\"Neutron Number\", symbol $N$, is the number of neutrons in a nuclide. Nuclides with the same value of $N$ but different values of $Z$ are called isotones. $N - Z$ is called the neutron excess number."^^ . . . "http://en.wikipedia.org/wiki/Neutron_number"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31895"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "N" . . "Neutronenzahl"@de . "Neutronov\u00E9 \u010D\u00EDslo"@cs . "Nombor neutron"@ms . "Nombre de neutrons"@fr . "liczba neutronowa"@pl . "neutron number"@en . "numero neutronico"@it . "n\u00F6tron snumaras\u0131"@tr . "n\u00FAmero de neutrons"@pt . "n\u00FAmero neutr\u00F3nico"@es . "\u0447\u0438\u0441\u043B\u043E \u043D\u0435\u0439\u0442\u0440\u043E\u043D\u043E\u0432"@ru . "\u0639\u062F\u062F \u0627\u0644\u0646\u064A\u0648\u062A\u0631\u0648\u0646\u0627\u062A"@ar . "\u0639\u062F\u062F \u0646\u0648\u062A\u0631\u0648\u0646"@fa . "\u4E2D\u5B50\u6578"@zh . . . "The \"Neutron Yield per Absorption\" is the average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified."^^ . . . "http://en.wikipedia.org/wiki/Fission_product_yield"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\eta$"^^ . "The \"Neutron Yield per Absorption\" is the average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified." . . "Neutron Yield per Absorption"@en . . "The \"Neutron Yield per Fission\" is the average number of fission neutrons, both prompt and delayed, emitted per fission event."^^ . . . "http://en.wikipedia.org/wiki/Fission_product_yield"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\nu$"^^ . "The \"Neutron Yield per Fission\" is the average number of fission neutrons, both prompt and delayed, emitted per fission event." . . "Neutron Yield per Fission"@en . . "The \"Non-Leakage Probability\" is the probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron"^^ . . . "http://en.wikipedia.org/wiki/Six_factor_formula"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\Lambda$"^^ . "The \"Non-Leakage Probability\" is the probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron" . . "Non-Leakage Probability"@en . . "\"Non-active Power\", for a two-terminal element or a two-terminal circuit under periodic conditions, is the quantity equal to the square root of the difference of the squares of the apparent power and the active power."^^ . . . . . . . . . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-43"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$Q^{'} = \\sqrt{{\\left | \\underline{S} \\right |}^2 - P^2}$, where $\\underline{S}$ is apparent power and $P$ is active power."^^ . "\"Non-active Power\", for a two-terminal element or a two-terminal circuit under periodic conditions, is the quantity equal to the square root of the difference of the squares of the apparent power and the active power." . "Q'" . . "Non-active Power"@en . . . . "\"NonNegativeLength\" is a measure of length greater than or equal to zero."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "\"NonNegativeLength\" is a measure of length greater than or equal to zero." . . "Positive Length"@en . . . "Normal stress is defined as the stress resulting from a force acting normal to a body surface. Normal stress can be caused by several loading methods, the most common being axial tension and compression, bending, and hoop stress."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Stress_(mechanics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\sigma = \\frac{dF_n}{dA}$, where $dF_n$ is the normal component of force and $dA$ is the area of the surface element."^^ . "$\\sigma$"^^ . "Normal stress is defined as the stress resulting from a force acting normal to a body surface. Normal stress can be caused by several loading methods, the most common being axial tension and compression, bending, and hoop stress." . . "Normal Stress"@en . . . "A \"Normalized Dimensionless Ratio\" is a dimensionless ratio ranging from 0.0 to 1.0"^^ . . . . . . . . . . . . . . . . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC2/HTML/link/ifcnormalisedratiomeasure.htm"^^ . "A \"Normalized Dimensionless Ratio\" is a dimensionless ratio ranging from 0.0 to 1.0" . . "Positive Dimensionless Ratio"@en . . . "Cross-sectional area of the nozzle at the throat."^^ . . . . . . . . . . . . . . . . . . . . . . "Cross-sectional area of the nozzle at the throat." . "A^*" . . "Nozzle Throat Cross-sectional Area"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Nozzle Throat Diameter"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "p^*" . . "Nozzle Throat Pressure"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . "F_R" . . "Nozzle Walls Thrust Reaction"@en . . . . "0112/2///62720#UAD131" . . "nuclear energy" . . "\"Nuclear Quadrupole Moment\" is a quantity that characterizes the deviation from spherical symmetry of the electrical charge distribution in an atomic nucleus."^^ . . . . . "http://en.wikipedia.org/wiki/Nuclear_quadrupole_resonance"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$Q = (\\frac{1}{e}) \\int (3z^2 - r^2)\\rho(x, y, z)dV$, in the quantum state with the nuclear spin in the field direction $(z)$, where $\\rho(x, y, z)$ is the nuclear electric charge density, $e$ is the elementary charge, $r^2 = x^2 + y^2 + z^2$, and $dV$ is the volume element $dx$ $dy$ $dz$."^^ . "\"Nuclear Quadrupole Moment\" is a quantity that characterizes the deviation from spherical symmetry of the electrical charge distribution in an atomic nucleus." . "Q" . . "Nuclear Quadrupole Moment"@en . . "\"Nuclear Radius\" is the conventional radius of sphere in which the nuclear matter is included"^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Atomic_nucleus"^^ . "This quantity is not exactly defined. It is given approximately for nuclei in their ground state only by $R = r_0 A^{\\frac{1}{3}}$, where $r_0 \\approx 1.2 x 10^{-15} m$ and $A$ is the nucleon number."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Nuclear Radius\" is the conventional radius of sphere in which the nuclear matter is included" . "R" . . "Nuclear Radius"@en . . . "The \"Spin Quantum Number\" describes the spin (intrinsic angular momentum) of the electron within that orbital, and gives the projection of the spin angular momentum S along the specified axis"^^ . . . "http://en.wikipedia.org/wiki/Quantum_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$I^2 = \\hbar^2 I(I + 1)$, where $\\hbar$ is the Planck constant."^^ . "The \"Spin Quantum Number\" describes the spin (intrinsic angular momentum) of the electron within that orbital, and gives the projection of the spin angular momentum S along the specified axis" . "I" . . "Spin Quantum Number"@en . . . "Number of nucleons in an atomic nucleus.A = Z+N. Nuclides with the same value of A are called isobars."^^ . . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31895"^^ . "Number of nucleons in an atomic nucleus.A = Z+N. Nuclides with the same value of A are called isobars." . "A" . . "Nombor nukleon"@ms . "Nukleonenzahl"@de . "Nukleov\u00E9 \u010D\u00EDslo"@cs . "liczba masowa"@pl . "nombre de masse"@fr . "nucleon number"@en . "numero di massa"@it . "n\u00FAmero de massa"@pt . "n\u00FAmero m\u00E1sico"@es . "n\u00FCkleon numaras\u0131"@tr . "\u0639\u062F\u062F \u062C\u0631\u0645\u06CC"@fa . "\u0639\u062F\u062F \u0643\u062A\u0644\u064A"@ar . "\u8CEA\u91CF\u6570"@ja . "\u8D28\u91CF\u6570"@zh . "Massenzahl"@de . "k\u00FCtle numaras\u0131"@tr . "mass number"@en . "nombor jisim"@ms . "numero di nucleoni"@it . . . "In physics, astronomy, and chemistry, number density (symbol: n) is a kind of quantity used to describe the degree of concentration of countable objects (atoms, molecules, dust particles, galaxies, etc.) in the three-dimensional physical space."^^ . . . . . . . . "http://dbpedia.org/resource/Number_density"^^ . . "http://en.wikipedia.org/wiki/Number_density"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$n = \\frac{N}{V}$, where $N$ is the number of particles and $V$ is volume."^^ . "In physics, astronomy, and chemistry, number density (symbol: n) is a kind of quantity used to describe the degree of concentration of countable objects (atoms, molecules, dust particles, galaxies, etc.) in the three-dimensional physical space." . "n" . . "Number Density"@en . . . "\"Number of Particles\", also known as the particle number, of a thermodynamic system, conventionally indicated with the letter N, is the number of constituent particles in that system."^^ . . . "http://en.wikipedia.org/wiki/Particle_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "\"Number of Particles\", also known as the particle number, of a thermodynamic system, conventionally indicated with the letter N, is the number of constituent particles in that system." . "N_B" . . "Number of Particles"@en . . "\"Olfactory Threshold\" are thresholds for the concentrations of various classes of smell that can be detected."^^ . . "http://en.wikipedia.org/wiki/Odor_detection_threshold"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\overline{T_o}$"^^ . "\"Olfactory Threshold\" are thresholds for the concentrations of various classes of smell that can be detected." . . "Olfactory Threshold"@en . . . "Angular momentum of the orbit per unit mass of the vehicle"^^ . . "Angular momentum of the orbit per unit mass of the vehicle" . "h" . . "Orbital Angular Momentum per Unit Mass"@en . . "The \"Principal Quantum Number\" describes the electron shell, or energy level, of an atom. The value of $n$ ranges from 1 to the shell containing the outermost electron of that atom."^^ . . . "http://en.wikipedia.org/wiki/Quantum_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$l^2 = \\hbar^2 l(l + 1), l = 0, 1, ..., n - 1$, where $l_i$ refers to a specific particle $i$."^^ . "l" . . "Orbital Angular Momentum Quantum Number"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "r" . . "Orbital Radial Distance"@en . . . "\"Order of Reflection\" is $n$ in the Bragg's Law equation."^^ . . . "http://www.answers.com/topic/order-of-reflection"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "n" . . "Order of Reflection"@en . . "The \"Osmotic Coefficient\" is a quantity which characterises the deviation of a solvent from ideal behavior."^^ . . . "http://en.wikipedia.org/wiki/Osmotic_coefficient"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\varphi = -(M_A\\sum b_B)^{-1} \\ln a_A$, where $M_A$ is the molar mass of the solvent $A$, $\\sum$ denotes summation over all the solutes, $b_B$ is the molality of solute $B$, and $a_A$ is the activity of solvent $A$."^^ . "$\\varphi$"^^ . "The \"Osmotic Coefficient\" is a quantity which characterises the deviation of a solvent from ideal behavior." . . "Osmotic Coefficient"@en . . "The \"Osmotic Pressure\" is the pressure which needs to be applied to a solution to prevent the inward flow of water across a semipermeable membrane."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Osmotic_pressure"^^ . "$\\varphi = -(M_A\\sum b_B)^{-1} \\ln a_A$, where $M_A$ is the molar mass of the solvent $A$, $\\sum$ denotes summation over all the solutes, $b_B$ is the molality of solute $B$, and $a_A$ is the activity of solvent $A$."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "The \"Osmotic Pressure\" is the pressure which needs to be applied to a solution to prevent the inward flow of water across a semipermeable membrane." . "\u03A0" . . "Osmotick\u00FD tlak"@cs . "Tekanan osmotik"@ms . "osmotic pressure"@en . "osmotischer Druck"@de . "ozmotik bas\u0131\u00E7"@tr . "presi\u00F3n osm\u00F3tica"@es . "pression osmotique"@fr . "pressione osmotica"@it . "press\u00E3o osm\u00F3tica"@pt . "\u0641\u0634\u0627\u0631 \u0627\u0633\u0645\u0632\u06CC"@fa . "\u6E17\u900F\u538B"@zh . . . "Additional distance traveled by a rocket because Of excessive initial velocity."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Additional distance traveled by a rocket because Of excessive initial velocity." . "s_i" . . "Over-range distance"@en . . . "Chemicals or substances having a pH less than 7 are said to be acidic; more than 7 means basic."^^ . . . "https://en.wikipedia.org/wiki/Acid"^^ . "https://en.wikipedia.org/wiki/PH"^^ . "Chemicals or substances having a pH less than 7 are said to be acidic; more than 7 means basic." . . "PH"@en . . "Sum of the basic mass and the MGA. Current prediction of the final mass based on the current requirements and design."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Sum of the basic mass and the MGA. Current prediction of the final mass based on the current requirements and design." . . "Predicted Mass"@en . . . "A measure of a body's dynamic (or coupled) imbalance resulting in a precession when rotating about an axis other than the body?s principal axis."^^ . . "A measure of a body's dynamic (or coupled) imbalance resulting in a precession when rotating about an axis other than the body?s principal axis." . . "Product of Inertia"@en . . "A measure of a body's dynamic (or coupled) imbalance resulting in a precession when rotating about an axis other than the body?s principal axis."^^ . . "A measure of a body's dynamic (or coupled) imbalance resulting in a precession when rotating about an axis other than the body?s principal axis." . . "Product of Inertia in the X axis"@en . . . "A measure of a body?s dynamic (or coupled) imbalance resulting in a precession when rotating about an axis other than the body's principal axis."^^ . . "A measure of a body?s dynamic (or coupled) imbalance resulting in a precession when rotating about an axis other than the body's principal axis." . . "Product of Inertia in the Y axis"@en . . . "A measure of a body's dynamic (or coupled) imbalance resulting in a precession when rotating about an axis other than the body's principal axis."^^ . . "A measure of a body's dynamic (or coupled) imbalance resulting in a precession when rotating about an axis other than the body's principal axis." . . "Product of Inertia in the Z axis"@en . . . "The \"Packing Fraction\" is the fraction of volume in a crystal structure that is occupied by atoms."^^ . . . "http://en.wikipedia.org/wiki/Atomic_packing_factor"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$f = \\frac{\\Delta_r}{A}$, where $\\Delta_r$ is the relative mass excess and $A$ is the nucleon number."^^ . "The \"Packing Fraction\" is the fraction of volume in a crystal structure that is occupied by atoms." . "f" . . "Packing Fraction"@en . . "\"Partial Pressure\" is the pressure that the gas would have if it alone occupied the volume of the mixture at the same temperature."^^ . "pa" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Partial_pressure"^^ . "$p_B = x_B \\cdot p$, where $x_B$ is the amount-of-substance fraction of substance $B$ and $p$ is the total pressure."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "\"Partial Pressure\" is the pressure that the gas would have if it alone occupied the volume of the mixture at the same temperature." . "p_B" . . "Partial Pressure"@en . . . "\"Particle Current\" can be used to describe the net number of particles passing through a surface in an infinitesimal time interval."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\int J \\cdot e_n dA = \\frac{dN}{dt}$, where $e_ndA$ is the vector surface element, $N$ is the net number of particles passing over a surface, and $dt$ describes the time interval."^^ . "\"Particle Current\" can be used to describe the net number of particles passing through a surface in an infinitesimal time interval." . "J" . "S" . . "Particle Current"@en . . . "vector whose component is perpendicular to a surface equal to the net number of particles crossing that surface in the positive direction per unit area and per unit time"@en . . "0112/2///62720#UAD132" . "Vektor, dessen Komponente senkrecht zu einer Fl\u00E4che gleich der Nettoanzahl von Teilchen ist, die fl\u00E4chen- und zeitbezogen in positiver Richtung durch diese Fl\u00E4che hindurchgehen"@de . "0173-1#Z4-BAJ388#002" . . "particle current density" . "particle current density"@en-US . . "\"Particle Fluence\" is the total number of particles that intersect a unit area in a specific time interval of interest, and has units of m\u20132 (number of particles per meter squared)."^^ . . . . . . . . "0112/2///62720#UAD133" . "http://en.wikipedia.org/wiki/Fluence"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\Phi = \\frac{dN}{dA}$, where $dN$ describes the number of particles incident on a small spherical domain at a given point in space, and $dA$ describes the cross-sectional area of that domain."^^ . "$\\Phi$"^^ . "\"Particle Fluence\" is the total number of particles that intersect a unit area in a specific time interval of interest, and has units of m\u20132 (number of particles per meter squared)." . . "Particle Fluence"@en . . "\"Particle Fluence Rate\" can be defined as the total number of particles (typically Gamma Ray Photons ) crossing over a sphere of unit cross section which surrounds a Point Source of Ionising Radiation."^^ . . . . "http://www.encyclo.co.uk/define/Fluence%20Rate"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\theta = \\frac{d\\Phi}{dt}$, where $d\\Phi$ is the increment of the particle fluence during an infinitesimal time interval with duration $dt$."^^ . "$\\theta$"^^ . "\"Particle Fluence Rate\" can be defined as the total number of particles (typically Gamma Ray Photons ) crossing over a sphere of unit cross section which surrounds a Point Source of Ionising Radiation." . . "Particle Fluence Rate"@en . . "The \"Particle Number Density\" is obtained by dividing the particle number of a system by its volume."^^ . . . . . . . . . "http://en.wikipedia.org/wiki/Particle_number#Particle_number_density"^^ . "$n = \\frac{N}{V}$, where $N$ is the number of particles in the 3D domain with the volume $V$."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Particle Number Density\" is obtained by dividing the particle number of a system by its volume." . "n" . . "Particle Number Density"@en . . . "\"Particle Position Vector\" is the position vector of a particle."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Position_(vector)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Particle Position Vector\" is the position vector of a particle." . "r, R" . . "Particle Position Vector"@en . . . "\"Particle Source Density\" is the rate of production of particles in a 3D domain divided by the volume of that element."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Particle Source Density\" is the rate of production of particles in a 3D domain divided by the volume of that element." . "S" . . "Particle Source Density"@en . . "\"PathLength\" is "^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Path_length"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"PathLength\" is " . "s" . . "Path Length"@en . . . "Payload mass is the mass of the payload carried by the craft. In a multistage spacecraft the payload mass of the last stage is the mass of the payload and the payload masses of the other stages are considered to be the gross masses of the next stages."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Payload mass is the mass of the payload carried by the craft. In a multistage spacecraft the payload mass of the last stage is the mass of the payload and the payload masses of the other stages are considered to be the gross masses of the next stages." . "M_P" . . "Payload Mass"@en . . . "The payload ratio is defined as the mass of the payload divided by the empty mass of the structure. Because of the extra cost involved in staging rockets, given the choice, it's often more economic to use few stages with a small payload ratio rather than more stages each with a high payload ratio."^^ . . . . . . . . . . . . . . . . "The payload ratio is defined as the mass of the payload divided by the empty mass of the structure. Because of the extra cost involved in staging rockets, given the choice, it's often more economic to use few stages with a small payload ratio rather than more stages each with a high payload ratio." . "L" . . "Payload Ratio"@en . . . "\"Peltier Coefficient\" represents how much heat current is carried per unit charge through a given material. It is the heat power developed at a junction, divided by the electric current flowing from substance a to substance b."^^ . . "http://en.wikipedia.org/wiki/Thermoelectric_effect"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$\\Pi_{ab}$"^^ . "\"Peltier Coefficient\" represents how much heat current is carried per unit charge through a given material. It is the heat power developed at a junction, divided by the electric current flowing from substance a to substance b." . . "Peltier Coefficient"@en . . "Duration of one cycle of a periodic phenomenon."^^ . . . . "Duration of one cycle of a periodic phenomenon." . "belongs to SOQ-ISO" . . "Period"@en . . . . . . . . "0112/2///62720#UAD134" . . . "Permeability"@en . . "The ratio of the effective permeability of a porous phase to the absolute permeability."^^ . . . "https://en.wikipedia.org/wiki/Relative_permeability"^^ . "The ratio of the effective permeability of a porous phase to the absolute permeability." . . . . "Permeability Ratio"@en . . "\"Permeance\" is the inverse of reluctance. Permeance is a measure of the quantity of flux for a number of current-turns in magnetic circuit. A magnetic circuit almost acts as though the flux is \"conducted\", therefore permeance is larger for large cross sections of a material and smaller for longer lengths. This concept is analogous to electrical conductance in the electric circuit."^^ . . . "0112/2///62720#UAD135" . "http://en.wikipedia.org/wiki/Permeance"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\Lambda = \\frac{1}{R_m}$, where $R_m$ is reluctance."^^ . "$\\Lambda$"^^ . "\"Permeance\" is the inverse of reluctance. Permeance is a measure of the quantity of flux for a number of current-turns in magnetic circuit. A magnetic circuit almost acts as though the flux is \"conducted\", therefore permeance is larger for large cross sections of a material and smaller for longer lengths. This concept is analogous to electrical conductance in the electric circuit." . . "Permeance"@en . . . "\"Permittivity\" is a physical quantity that describes how an electric field affects, and is affected by a dielectric medium, and is determined by the ability of a material to polarize in response to the field, and thereby reduce the total electric field inside the material. Permittivity is often a scalar valued quantity, however in the general case it is tensor-valued."^^ . . . . . . . . "http://dbpedia.org/resource/Permittivity"^^ . . "0112/2///62720#UAD136" . "http://en.wikipedia.org/wiki/Permittivity?oldid=494094133"^^ . "http://maxwells-equations.com/materials/permittivity.php"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\epsilon = \\frac{D}{E}$, where $D$ is electric flux density and $E$ is electric field strength."^^ . "$\\epsilon$"^^ . "\"Permittivity\" is a physical quantity that describes how an electric field affects, and is affected by a dielectric medium, and is determined by the ability of a material to polarize in response to the field, and thereby reduce the total electric field inside the material. Permittivity is often a scalar valued quantity, however in the general case it is tensor-valued." . . . "Permittivity"@en . . "\"Permittivity Ratio\" is the ratio of permittivity to the permittivity of a vacuum."^^ . . "http://dbpedia.org/resource/Permittivity"^^ . "$rel-permittivity$"^^ . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\epsilon_r = \\epsilon / \\epsilon_0$, where $\\epsilon$ is permittivity and $\\epsilon_0$ is the electric constant."^^ . "$\\epsilon_r$"^^ . "\"Permittivity Ratio\" is the ratio of permittivity to the permittivity of a vacuum." . . . . "Permittivity Ratio"@en . . . . "The phase coefficient is the amount of phase shift that occurs as the wave travels one meter. Increasing the loss of the material, via the manipulation of the material's conductivity, will decrease the wavelength (increase $\\beta$) and increase the attenuation coefficient (increase $\\alpha$)."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Attenuation_coefficient"^^ . "If $F(x) = Ae^{-\\alpha x} \\cos{[\\beta (x - x_0)]}$, then $\\alpha$ is the attenuation coefficient and $\\beta$ is the phase coefficient."^^ . "$\\beta$"^^ . "belongs to SOQ-ISO" . . "Phase coefficient"@en . . "\"Phase Difference} is the difference, expressed in electrical degrees or time, between two waves having the same frequency and referenced to the same point in time. Two oscillators that have the same frequency and different phases have a phase difference, and the oscillators are said to be out of phase with each other. The amount by which such oscillators are out of step with each other can be expressed in degrees from $0^\\circ$ to $360^\\circ$, or in radians from 0 to ${2\\pi}$. If the phase difference is $180^\\circ$ ($\\pi$ radians), then the two oscillators are said to be in antiphase."^^ . . . . . . . . . . . . . "$phase-difference$"^^ . . "http://en.wikipedia.org/wiki/Phase_(waves)#Phase_difference"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-06"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\varphi = \\varphi_u - \\varphi_i$, where $\\varphi_u$ is the initial phase of the voltage and $\\varphi_i$ is the initial phase of the electric current."^^ . "$\\varphi$"^^ . . "Phasenverschiebungswinkel"@de . "diferencia de fase"@es . "diferen\u00E7a de fase"@pt . "diff\u00E9rence de phase"@fr . "phase difference"@en . "przesuni\u0119cie fazowe"@pl . "sfasamento angolare"@it . "\u0627\u062E\u062A\u0644\u0627\u0641 \u0637\u0648\u0631"@ar . "\u4F4D\u76F8\u5DEE"@ja . "desfasagem"@pt . "d\u00E9phasage"@fr . . . "In a dispersive medium sound speed is a function of sound frequency, through the dispersion relation. The spatial and temporal distribution of a propagating disturbance will continually change. Each frequency component propagates at its own Phase Velocity of Sound."^^ . . . . "http://en.wikipedia.org/wiki/Speed_of_sound"^^ . "$c = \\frac{\\omega}{k} = \\lambda f$, where $\\omega$ is the angular frequency, $k$ is angular wavenumber, $\\lambda$ is the wavelength, and $f$ is the frequency."^^ . "In a dispersive medium sound speed is a function of sound frequency, through the dispersion relation. The spatial and temporal distribution of a propagating disturbance will continually change. Each frequency component propagates at its own Phase Velocity of Sound." . "c" . "belongs to SOQ-ISO" . . "Phase speed of sound"@en . . . "\"Phonon Mean Free Path\" is the mean free path of phonons."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Thermal_conductivity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Phonon Mean Free Path\" is the mean free path of phonons." . "l_{ph}" . . "Phonon Mean Free Path"@en . . . "\"Photo Threshold of Awareness Function\" is the ability of the human eye to detect a light that results in a $1^o$ radial angle at the eye with a given duration (temporal summation)."^^ . . "https://www.britannica.com/science/human-eye/Colour-vision"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . . "Photo Threshold of Awareness Function"@en . . "A measure of flux of photons per solid angle"^^ . . . "0112/2///62720#UAD137" . "https://en.wikipedia.org/wiki/Photon_counting"^^ . . "Photon Intensity"@en . . "ratio between the photon flux at a point on a surface and in a given direction and the product of the solid angle and the orthogonal projection of this element on a plane perpendicular to the given direction "@en . . "0112/2///62720#UAD138" . "Quotient aus dem durch eine Fl\u00E4che in einer Richtung durchgehenden Photonenstrom und dem Produkt aus dem durchstrahlten Raumwinkel und der Projektion dieser Fl\u00E4che auf eine Ebene senkrecht zur betrachteten Fl\u00E4che"@de . "0173-1#Z4-BAJ363#002" . . "photon luminance" . "photon luminance"@en-US . . "A measure of flux of photons per surface area per solid angle"^^ . . . "https://en.wikipedia.org/wiki/Photon_counting"^^ . . "Photon Radiance"@en . . "Photosynthetic Photon Flux (PPF) is a measurement of the total number of photons emitted by a light source each second within the PAR wavelength range and is measured in \u03BCmol/s. Lighting manufacturers may specify their grow light products in terms of PPF. It can be considered as analogous to measuring the luminous flux (lumens) of visible light which would typically require the use of an integrating sphere or a goniometer system with spectroradiometer sensor."^^ . . . "https://www.dormgrow.com/par/"^^ . "Photosynthetic Photon Flux (PPF) is a measurement of the total number of photons emitted by a light source each second within the PAR wavelength range and is measured in \u03BCmol/s. Lighting manufacturers may specify their grow light products in terms of PPF. It can be considered as analogous to measuring the luminous flux (lumens) of visible light which would typically require the use of an integrating sphere or a goniometer system with spectroradiometer sensor." . . "Photosynthetic Photon Flux"@en . "PPF" . . . "Photosynthetically Active Radiation are the wavelengths of light within the visible range of 400 to 700 nanometers (nm) that are critical for photosynthesis. PPFD measures the amount of PAR light (photons) that arrive at the plant\u2019s surface each second. The PPFD is measured at various distances with a Full-spectrum Quantum Sensor, also known as a PAR meter. Natural sunlight has a PAR value of 900-1500\u03BCMol/m2/s when the sun is directly overhead. For a grow light to be effective, it should have PAR values of 500-1500 \u03BCMol/m2/s."^^ . . . . . . . . . . . "https://www.gigahertz-optik.com/en-us/service-and-support/knowledge-base/measurement-of-par/"^^ . "Photosynthetically Active Radiation are the wavelengths of light within the visible range of 400 to 700 nanometers (nm) that are critical for photosynthesis. PPFD measures the amount of PAR light (photons) that arrive at the plant\u2019s surface each second. The PPFD is measured at various distances with a Full-spectrum Quantum Sensor, also known as a PAR meter. Natural sunlight has a PAR value of 900-1500\u03BCMol/m2/s when the sun is directly overhead. For a grow light to be effective, it should have PAR values of 500-1500 \u03BCMol/m2/s." . . "Photosynthetic Photon Flux Density"@en . "PPFD" . . . "smallest element of a display space (cell size) of a digitized two-dimensional field representation of an image which has an address (x and y coordinates corresponding to its position in the field) and a specific brightness value"@en . . . "0112/2///62720#UAD299" . "kleinstes Element einer Darstellungsfl\u00E4che (Zellgr\u00F6\u00DFe) einer digitalisierten zweidimensionalen Felddarstellung eines Bildes, die eine Adresse (x- und y-Koordinaten entsprechend seiner Position im Feld) und einen spezifischen Helligkeitswert besitzt"@de . "0173-1#Z4-BAJ437#002" . . "picture element" . "picture element"@en-US . . . "0112/2///62720#UAD146" . . "piece" . . "Another name for Force Per Area, used by the Industry Foundation Classes (IFC) standard."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Pressure"^^ . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC1/HTML/schema/ifcmeasureresource/lexical/ifcplanarforcemeasure.htm"^^ . "Another name for Force Per Area, used by the Industry Foundation Classes (IFC) standard." . "p" . . "Fl\u00E4chenlast"@de . "Planar Force"@en . . . "The $\\textit{Planck function}$ is used to compute the radiance emitted from objects that radiate like a perfect \"Black Body\". The inverse of the $\\textit{Planck Function}$ is used to find the $\\textit{Brightness Temperature}$ of an object. The precise formula for the Planck Function depends on whether the radiance is determined on a $\\textit{per unit wavelength}$ or a $\\textit{per unit frequency}$. In the ISO System of Quantities, $\\textit{Planck Function}$ is defined by the formula: $Y = -G/T$, where $G$ is Gibbs Energy and $T$ is thermodynamic temperature."^^ . "$B_{\\nu}(T)$"^^ . . "http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680008986_1968008986.pdf"^^ . "http://pds-atmospheres.nmsu.edu/education_and_outreach/encyclopedia/planck_function.htm"^^ . "http://www.star.nesdis.noaa.gov/smcd/spb/calibration/planck.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "The Planck function, $B_{\\tilde{\\nu}}(T)$, is given by:\n$B_{\\nu}(T) = \\frac{2h c^2\\tilde{\\nu}^3}{e^{hc / k \\tilde{\\nu} T}-1}$\nwhere, $\\tilde{\\nu}$ is wavelength, $h$ is Planck's Constant, $k$ is Boltzman's Constant, $c$ is the speed of light in a vacuum, $T$ is thermodynamic temperature."^^ . . "Planck Function"@en . . . . . . . . "The inclination to each other of two intersecting lines, measured by the arc of a circle intercepted between the two lines forming the angle, the center of the circle being the point of intersection. An acute angle is less than \\(90^\\circ\\), a right angle \\(90^\\circ\\); an obtuse angle, more than \\(90^\\circ\\) but less than \\(180^\\circ\\); a straight angle, \\(180^\\circ\\); a reflex angle, more than \\(180^\\circ\\) but less than \\(360^\\circ\\); a perigon, \\(360^\\circ\\). Any angle not a multiple of \\(90^\\circ\\) is an oblique angle. If the sum of two angles is \\(90^\\circ\\), they are complementary angles; if \\(180^\\circ\\), supplementary angles; if \\(360^\\circ\\), explementary angles."^^ . . . . . . . . . . . . . "http://dbpedia.org/resource/Plane_angle"^^ . . . "0112/2///62720#UAD140" . "http://www.thefreedictionary.com/plane+angle"^^ . "An angle formed by two straight lines (in the same plane) angle - the space between two lines or planes that intersect; the inclination of one line to another; measured in degrees or radians" . . . . . "Rovinn\u00FD \u00FAhel"@cs . "Sudut satah"@ms . "angle plan"@fr . "angolo piano"@it . "angulus planus"@la . "d\u00FCzlemsel a\u00E7\u0131"@tr . "ebener Winkel"@de . "k\u0105t p\u0142aski"@pl . "medida angular"@pt . "plane angle"@en . "ravninski kot"@sl . "sz\u00F6g"@hu . "unghi plan"@ro . "\u00E1ngulo plano"@es . "\u0395\u03C0\u03AF\u03C0\u03B5\u03B4\u03B7 \u03B3\u03C9\u03BD\u03AF\u03B1"@el . "\u041F\u043B\u043E\u0441\u043A\u0438\u0439 \u0443\u0433\u043E\u043B"@ru . "\u0420\u0430\u0432\u043D\u0438\u043D\u0435\u043D \u044A\u0433\u044A\u043B"@bg . "\u05D6\u05D5\u05D5\u05D9\u05EA"@he . "\u0627\u0644\u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u0646\u0635\u0641 \u0642\u0637\u0631\u064A\u0629"@ar . "\u0632\u0627\u0648\u06CC\u0647 \u0645\u0633\u062A\u0648\u06CC"@fa . "\u0915\u094D\u0937\u0947\u0924\u094D\u0930"@hi . "\u5F27\u5EA6"@ja . "\u89D2\u5EA6"@zh . . "The Poisson Ratio is the negative ratio of transverse to axial strain. In fact, when a sample object is stretched (or squeezed), to an extension (or contraction) in the direction of the applied load, it corresponds a contraction (or extension) in a direction perpendicular to the applied load. The ratio between these two quantities is the Poisson's ratio."^^ . . . "http://en.wikipedia.org/wiki/Poisson%27s_ratio"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\mu = \\frac{\\Delta \\delta}{\\Delta l}$, where $\\Delta \\delta$ is the lateral contraction and $\\Delta l$ is the elongation."^^ . "$\\mu$"^^ . "The Poisson Ratio is the negative ratio of transverse to axial strain. In fact, when a sample object is stretched (or squeezed), to an extension (or contraction) in the direction of the applied load, it corresponds a contraction (or extension) in a direction perpendicular to the applied load. The ratio between these two quantities is the Poisson's ratio." . . "Poisson Ratio"@en . . "The polar moment of inertia is a quantity used to predict an object's ability to resist torsion, in objects (or segments of objects) with an invariant circular cross-section and no significant warping or out-of-plane deformation. It is used to calculate the angular displacement of an object subjected to a torque. It is analogous to the area moment of inertia, which characterizes an object's ability to resist bending. "^^ . . . . . . . "http://en.wikipedia.org/wiki/Second_moment_of_area"^^ . "The polar moment of inertia is a quantity used to predict an object's ability to resist torsion, in objects (or segments of objects) with an invariant circular cross-section and no significant warping or out-of-plane deformation. It is used to calculate the angular displacement of an object subjected to a torque. It is analogous to the area moment of inertia, which characterizes an object's ability to resist bending. " . "J_{zz}" . . "Polar moment of inertia"@en . . . "\"Polarizability\" is the relative tendency of a charge distribution, like the electron cloud of an atom or molecule, to be distorted from its normal shape by an external electric field, which may be caused by the presence of a nearby ion or dipole. The electronic polarizability $\\alpha$ is defined as the ratio of the induced dipole moment of an atom to the electric field that produces this dipole moment. Polarizability is often a scalar valued quantity, however in the general case it is tensor-valued."^^ . "measure of the deformability of the electron shell of molecules and atoms"@en . . . "http://dbpedia.org/resource/Polarizability"^^ . . "0112/2///62720#UAD141" . "$\\alpha$"^^ . "Ma\u00DF f\u00FCr die Deformierbarkeit der Elektronenh\u00FClle von Molek\u00FClen und Atomen "@de . "0173-1#Z4-BAJ365#002" . . "Polarizability"@en-US . "polarisability"@en . . "The Polarization Field is the vector field that expresses the density of permanent or induced electric dipole moments in a dielectric material. The polarization vector P is defined as the ratio of electric dipole moment per unit volume."^^ . . . . . . . . . . . . "The Polarization Field is the vector field that expresses the density of permanent or induced electric dipole moments in a dielectric material. The polarization vector P is defined as the ratio of electric dipole moment per unit volume." . "P" . . "Polarization Field"@en . . . "Population typically refers to the number of people in a single area, whether it be a city or town, region, country, continent, or the world, but can also represent the number of any kind of entity."^^ . . . "https://en.wikipedia.org/wiki/Population"^^ . "Population typically refers to the number of people in a single area, whether it be a city or town, region, country, continent, or the world, but can also represent the number of any kind of entity." . . "Population"@en . . . "A \"Position Vector\", also known as location vector or radius vector, is a Euclidean vector which represents the position of a point P in space in relation to an arbitrary reference origin O."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Position_(vector)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$r = \\overrightarrow{OP}$, where $O$ and $P$ are two points in space."^^ . "A \"Position Vector\", also known as location vector or radius vector, is a Euclidean vector which represents the position of a point P in space in relation to an arbitrary reference origin O." . "r" . . "Position Vector"@en . . . "A \"Positive Dimensionless Ratio\" is a dimensionless ratio that is greater than zero"^^ . . . . . . . . . . . . . . . . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC2/HTML/link/ifcpositiveratiomeasure.htm"^^ . "A \"Positive Dimensionless Ratio\" is a dimensionless ratio that is greater than zero" . . "Positive Dimensionless Ratio"@en . . . "\"PositiveLength\" is a measure of length strictly greater than zero."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "\"PositiveLength\" is a measure of length strictly greater than zero." . . "Positive Length"@en . . . "A \"PositivePlaneAngle\" is a plane angle strictly greater than zero."^^ . . . . . . . . . . . . . . "http://www.thefreedictionary.com/plane+angle"^^ . "A \"PositivePlaneAngle\" is a plane angle strictly greater than zero." . . "Positive Plane Angle"@en . . . "Energy possessed by a body by virtue of its position in a gravity field in contrast with kinetic energy, that possessed by virtue of its motion."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Potential_energy"^^ . . "http://en.wikipedia.org/wiki/Potential_energy"^^ . "$V = -\\int F \\cdot dr$, where $F$ is a conservative force and $R$ is a position vector."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "Energy possessed by a body by virtue of its position in a gravity field in contrast with kinetic energy, that possessed by virtue of its motion." . "PE" . "U" . . "Energia potencjalna"@pl . "Energie poten\u021Bial\u0103"@ro . "Potansiyel enerji"@tr . "Tenaga keupayaan"@ms . "energia potencial"@pt . "energia potenziale"@it . "energ\u00EDa potencial"@es . "potenci\u00E1ln\u00ED energie"@cs . "potential energy"@en . "potentielle Energie"@de . "\u00E9nergie potentielle"@fr . "\u043F\u043E\u0442\u0435\u043D\u0446\u0438\u0430\u043B\u044C\u043D\u0430\u044F \u044D\u043D\u0435\u0440\u0433\u0438\u044F"@ru . "\u0627\u0646\u0631\u0698\u06CC \u067E\u062A\u0627\u0646\u0633\u06CC\u0644"@fa . "\u0637\u0627\u0642\u0629 \u0648\u0636\u0639"@ar . "\u0938\u094D\u0925\u093F\u0924\u093F\u091C \u090A\u0930\u094D\u091C\u093E"@hi . "\u4F4D\u7F6E\u30A8\u30CD\u30EB\u30AE\u30FC"@ja . "\u52BF\u80FD"@zh . . . "Power is the rate at which work is performed or energy is transmitted, or the amount of energy required or expended for a given unit of time. As a rate of change of work done or the energy of a subsystem, power is: \\(P = W/t\\), where \\(P\\) is power, \\(W\\) is work and {t} is time."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Power"^^ . . "http://en.wikipedia.org/wiki/Power"^^ . "http://en.wikipedia.org/wiki/Power_%28physics%29"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$P = F \\cdot v$, where $F$ is force and $v$ is velocity."^^ . . "P" . "p" . . "Kuasa"@ms . "Leistung"@de . "V\u00FDkon"@cs . "g\u00FC\u00E7"@tr . "moc"@pl . "mo\u010D"@sl . "potencia"@es . "potentia"@la . "potenza"@it . "pot\u00EAncia"@pt . "power"@en . "puissance"@fr . "putere"@ro . "teljes\u00EDtm\u00E9ny , h\u0151\u00E1raml\u00E1s"@hu . "\u0399\u03C3\u03C7\u03CD\u03C2"@el . "\u041C\u043E\u0449\u043D\u043E\u0441\u0442"@bg . "\u041C\u043E\u0449\u043D\u043E\u0441\u0442\u044C"@ru . "\u05D4\u05E1\u05E4\u05E7"@he . "\u0627\u0644\u0642\u062F\u0631\u0629"@ar . "\u062A\u0648\u0627\u0646\u060C \u0646\u0631\u062E \u062C\u0631\u06CC\u0627\u0646 \u06AF\u0631\u0645\u0627"@fa . "\u0936\u0915\u094D\u0924\u093F"@hi . "\u529F\u7387\u3001\u70ED\u6D41"@zh . "\u96FB\u529B\u30FB\u4ED5\u4E8B\u7387"@ja . "flux energetic"@ro . "strumie\u0144 promieniowania"@pl . "\u0131s\u0131 ak\u0131\u015F oran\u0131"@tr . "\u0935\u093F\u0915\u093F\u0930\u0923\u0940 \u092C\u0939\u093E\u0935"@hi . . . . . "Power Area"@en . . . . . "Power Area per Solid Angle"@en . . "ratio indicating the relationship between continuous power and continuous current"@en . . "Verh\u00E4ltnis, das den Zusammenhang zwischen der Dauerkraft zum Dauerstrom kennzeichnet"@de . "0173-1#Z4-BAJ330#003" . . "power constant"@en-US . . "\"Power Factor\", under periodic conditions, is the ratio of the absolute value of the active power $P$ to the apparent power $S$."^^ . . "$power-factor$"^^ . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-46"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\lambda = \\left | P \\right | / \\left | S \\right |$, where $P$ is active power and $S$ is apparent power."^^ . "$\\lambda$"^^ . . "Leistungsfaktor"@de . "Wsp\u00F3\u0142czynnik mocy"@pl . "facteur de puissance"@fr . "factor de potencia"@es . "factor de putere"@ro . "faktor kuasa"@ms . "fator de pot\u00EAncia"@pt . "fattore di potenza"@it . "g\u00FC\u00E7 fakt\u00F6r\u00FC"@tr . "power factor"@en . "\u00DA\u010Din\u00EDk"@cs . "\u041A\u043E\u044D\u0444\u0444\u0438\u0446\u0438\u0435\u043D\u0442_\u043C\u043E\u0449\u043D\u043E\u0441\u0442\u0438"@ru . "\u0636\u0631\u06CC\u0628 \u062A\u0648\u0627\u0646"@fa . "\u0645\u0639\u0627\u0645\u0644 \u0627\u0644\u0642\u062F\u0631\u0629"@ar . "\u0936\u0915\u094D\u0924\u093F \u0917\u0941\u0923\u093E\u0902\u0915"@hi . "\u529B\u7387"@ja . "\u529F\u7387\u56E0\u6570"@zh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.physicsforums.com/library.php?do=view_item&itemid=406"^^ . . "Power Per Area"@en . . . . "Power per Area Angle"@en . . . . . "Power per area quartic temperature"@en . . "\"Power Per Electric Charge\" is the amount of energy generated by a unit of electric charge."^^ . . . . . "\"Power Per Electric Charge\" is the amount of energy generated by a unit of electric charge." . . "Power Per Electric Charge"@en . . "\n A $\\textit{Poynting Vector}$ is the vector product of the electric field strength $\\mathbf{E}$\n and the magnetic field strength $\\mathbf{H}$ of the electromagnetic field at a given point. \n The flux of the Poynting vector through a closed surface is equal to the electromagnetic power passing\n through this surface. \n For a periodic electromagnetic field, the time average of the Poynting vector is a vector of which,\n with certain reservations, the direction may be considered as being the direction of propagation\n of electromagnetic energy and the magnitude considered as being the average electromagnetic power\n flux density.\n "^^ . . . "$poynting-vector$"^^ . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-66"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\mathbf{S} = \\mathbf{E} \\times \\mathbf{H} $, where $\\mathbf{E}$ is electric field strength and \\mathbf{H} is magnetic field strength."^^ . "$\\mathbf{S} $"^^ . "\"Poynting Vector} is the vector product of the electric field strength \\mathbf{E} and the magnetic field strength \\mathbf{H\" of the electromagnetic field at a given point. The flux of the Poynting vector through a closed surface is equal to the electromagnetic power passing through this surface. For a periodic electromagnetic field, the time average of the Poynting vector is a vector of which, with certain reservations, the direction may be considered as being the direction of propagation of electromagnetic energy and the magnitude considered as being the average electromagnetic power flux density." . . "Poynting vector"@en . "Poynting-Vektor"@de . "vecteur de Poynting"@fr . "vector de Poynting"@es . "vector de Poynting"@pt . "vettore di Poynting"@it . "wektor Poyntinga"@pl . "\u0432\u0435\u043A\u0442\u043E\u0440 \u041F\u043E\u0439\u043D\u0442\u0438\u043D\u0433\u0430"@ru . "\u0645\u062A\u062C\u064E\u0647 \u0628\u0648\u064A\u0646\u062A\u0646\u062C"@ar . "\u30DD\u30A4\u30F3\u30C6\u30A3\u30F3\u30B0\u30D9\u30AF\u30C8\u30EB"@ja . . "Pressure is an effect which occurs when a force is applied on a surface. Pressure is the amount of force acting on a unit area. Pressure is distinct from stress, as the former is the ratio of the component of force normal to a surface to the surface area. Stress is a tensor that relates the vector force to the vector area."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Pressure"^^ . . "0112/2///62720#UAD142" . "http://en.wikipedia.org/wiki/Pressure"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$p = \\frac{dF}{dA}$, where $dF$ is the force component perpendicular to the surface element of area $dA$."^^ . "Pressure is an effect which occurs when a force is applied on a surface. Pressure is the amount of force acting on a unit area. Pressure is distinct from stress, as the former is the ratio of the component of force normal to a surface to the surface area. Stress is a tensor that relates the vector force to the vector area." . . . "Druck"@de . "Tekanan"@ms . "Tlak"@cs . "bas\u0131n\u00E7"@tr . "ci\u015Bnienie"@pl . "nyom\u00E1s"@hu . "presiune"@ro . "presi\u00F3n"@es . "pressio"@la . "pression"@fr . "pressione"@it . "pressure"@en . "press\u00E3o"@pt . "tlak"@sl . "\u03A0\u03AF\u03B5\u03C3\u03B7 - \u03C4\u03AC\u03C3\u03B7"@el . "\u0414\u0430\u0432\u043B\u0435\u043D\u0438\u0435"@ru . "\u041D\u0430\u043B\u044F\u0433\u0430\u043D\u0435"@bg . "\u05DC\u05D7\u05E5"@he . "\u0627\u0644\u0636\u063A\u0637 \u0623\u0648 \u0627\u0644\u0625\u062C\u0647\u0627\u062F"@ar . "\u0641\u0634\u0627\u0631\u060C \u062A\u0646\u0634"@fa . "\u0926\u092C\u093E\u0935"@hi . "\u538B\u5F3A\u3001\u538B\u529B"@zh . "\u5727\u529B"@ja . "napr\u0119\u017Cenie"@pl . "pritisk"@sl . "tegasan"@ms . "tensione meccanica"@it . "tensiune mecanic\u0103"@ro . "tens\u00E3o"@pt . "\u043C\u0435\u0445\u0430\u043D\u0438\u0447\u043D\u043E \u043D\u0430\u043F\u0440\u0435\u0436\u0435\u043D\u0438\u0435"@bg . "\u0926\u093E\u092C"@hi . . . "ratio between the amount-of-substance of a dissolved material and the mass of its solvent divided by the related pressure"@en . . "Quotient Molarit\u00E4t (Quotient aus der Stoffmenge eines gel\u00F6sten Stoffes und dem Volumen der L\u00F6sung) dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ307#002" . . "pressure-based amount-of-substance concentration"@en-US . . "ratio of density divided by the related pressure"@en . . "Quotient aus Dichte dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ299#003" . . "pressure-based density"@en-US . . "ratio of dynamic viscosity divided by the related pressure"@en . . "Quotient aus der dynamischen Viskosit\u00E4t dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ300#002" . . "pressure-based dynamic viscosity"@en-US . . "ratio of electric current divided by the related pressure"@en . . "Quotient elektrische Stromst\u00E4rke dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ309#002" . . "pressure-based electric current"@en-US . . "ratio of electric voltage divided by the related pressure"@en . . "Quotient elektrischer Spannung dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ301#003" . . "pressure-based electric voltage"@en-US . . "ratio of dynamic viscosity and density of the material divided by the related pressure"@en . . "Quotient aus der dynamischen Viskosit\u00E4t und der Dichte eines Stoffes dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ303#002" . . "pressure-based kinematic viscosity"@en-US . . "ratio of length divided by the related pressure"@en . . "Quotient L\u00E4nge dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ304#002" . . "pressure-based length"@en-US . . "ratio of mass divided by the related pressure"@en . . "Quotient Masse dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ305#003" . . "pressure-based mass"@en-US . . "ratio of mass flow divided by the related pressure"@en . . "Quotient Massenstrom dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ310#002" . . "pressure-based mass flow"@en-US . . "ratio of molality divided by the related pressure"@en . . "Quotient Molalit\u00E4t dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ306#002" . . "pressure-based molality"@en-US . . . . "pressure-based quantity"@en-US . . "ratio of temperature divided by the related pressure"@en . . "Quotient Temperatur dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ308#003" . . "pressure-based temperature"@en-US . . "ratio of velocity divided by the related pressure"@en . . "Quotient Geschwindigkeit dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ302#001" . . "pressure-based velocity"@en-US . . "ratio of volume divided by the related pressure"@en . . "Quotient Volumen dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ312#002" . . "pressure-based volume"@en-US . . "ratio of volume flow divided by the related pressure"@en . . "Quotient Volumenstrom dividiert durch den zugeh\u00F6rigen Druck"@de . "0173-1#Z4-BAJ311#002" . . "pressure-based volume flow"@en-US . . . . . . . . . . . . . . "$\\alpha$"^^ . . "Pressure Burning Rate Constant"@en . . . . . . . . . . . . . . . "$\\beta$"^^ . . "Pressure Burning Rate Index"@en . . . . . . . . . "$pres-coef$"^^ . . "0112/2///62720#UAD143" . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$\\beta = \\left (\\frac{\\partial p}{\\partial T} \\right )_V$, where $p$ is $pressure$, $T$ is thermodynamic temperature and $V$ is volume."^^ . "$\\beta$"^^ . . "Pressure Coefficient"@en . . "differential pressure divided by the associated length"@en . . . . . . . . . "0112/2///62720#UAD144" . "Differenzdruck dividiert durch die zugeh\u00F6rige L\u00E4nge"@de . "0173-1#Z4-BAJ313#003" . . "pressure gradient" . "pressure gradient"@en-US . . "ratio between pressure and the volume flow at a given cross-sectional area, passing through this cross-sectional area "@en . . "an einer festgelegten Querschnittsfl\u00E4che der Quotient Druck durch den Volumenstrom, der durch diese Querschnittsfl\u00E4che hindurchgeht"@de . "0173-1#Z4-BAJ290#002" . . "pressure in relation to volume flow"@en-US . . . . . . "0112/2///62720#UAD145" . . "pressure in relation to volume flow rate" . . "\"Pressure Loss per Length\" refers to the power lost in overcoming the friction between two moving surfaces. Also referred to as \"Friction Loss\"."^^ . . . "https://en.wikipedia.org/wiki/Friction_loss"^^ . "\"Pressure Loss per Length\" refers to the power lost in overcoming the friction between two moving surfaces. Also referred to as \"Friction Loss\"." . . "Pressure Loss per Length"@en . . . . "true"^^ . . . . . "Pressure Percentage"@en . . . . . . . . . . . . . . "Pressure Ratio"@en . . . "In epidemiology, prevalence is the proportion of a particular population found to be affected by a medical condition (typically a disease or a risk factor such as smoking or seatbelt use) at a specific time. (Wikipedia)"^^ . . . "https://en.wikipedia.org/wiki/Prevalence"^^ . "In epidemiology, prevalence is the proportion of a particular population found to be affected by a medical condition (typically a disease or a risk factor such as smoking or seatbelt use) at a specific time. (Wikipedia)" . . . . "Prevalence"@en . . . "The \"Principal Quantum Number\" describes the electron shell, or energy level, of an atom. The value of $n$ ranges from 1 to the shell containing the outermost electron of that atom."^^ . . . "http://en.wikipedia.org/wiki/Quantum_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "n" . . "Principal Quantum Number"@en . . . . . . "The propagation constant, symbol $\\gamma$, for a given system is defined by the ratio of the amplitude at the source of the wave to the amplitude at some distance x."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Propagation_constant"^^ . "$\\gamma = \\alpha + j\\beta$, where $\\alpha$ is the attenuation coefficient and $\\beta$ is the phase coefficient."^^ . "$\\gamma$"^^ . "belongs to SOQ-ISO" . . "Propagation coefficient"@en . . . . . "Propellant Burn Rate"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "M_f" . . "Propellant Mass"@en . . . . . . . . . . . "Propellant Mean Bulk Temperature"@en . "PMBT" . . . . . . . . . . . "Propellant Temperature"@en . . . "\"Quality Factor\", of a resonant circuit, is a measure of the \"goodness\" or quality of a resonant circuit. A higher value for this figure of merit correspondes to a more narrow bandwith, which is desirable in many applications. More formally, $Q$ is the ratio of power stored to power dissipated in the circuit reactance and resistance, respectively"^^ . . . "http://en.sourcetronic.com/electrical-measurement-glossary/quality-factor.html"^^ . "http://www.allaboutcircuits.com/vol_2/chpt_6/6.html"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "If $\\underline{Z} = R + jX$, then $Q = \\left | X \\right |/R$, where $\\underline{Z}$ is impedance, $R$ is resistance, and $X$ is reactance."^^ . "Q" . "Resolve Quality Facor - electronics and also doses" . . "Quality Factor"@en . . . . "work of a light source provided in the form of light as the product of the luminous flux \u03A6 produced by the light source and the time t for which this is radiated"@en . . "0112/2///62720#UAD147" . "in Form von Licht aufgebrachte Arbeit einer Lichtquelle als Produkt aus dem von der Lichtquelle ausgehenden Lichtstrom \u03A6 und der Zeit t, w\u00E4hrend dieser ausgestrahlt wird"@de . "0173-1#Z4-BAJ243#002" . . "quantity of light" . "quantity of light"@en-US . . "The \"Quantum Number\" describes values of conserved quantities in the dynamics of the quantum system. Perhaps the most peculiar aspect of quantum mechanics is the quantization of observable quantities, since quantum numbers are discrete sets of integers or half-integers."^^ . . . "http://en.wikipedia.org/wiki/Quantum_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "The \"Quantum Number\" describes values of conserved quantities in the dynamics of the quantum system. Perhaps the most peculiar aspect of quantum mechanics is the quantization of observable quantities, since quantum numbers are discrete sets of integers or half-integers." . "n" . . "Quantum Number"@en . . . . "true"^^ . . . "Quartic Electric Dipole Moment per Cubic Energy"@en . . "A quantity of mass held by Program/project management to mitigate the risk of over-predicted performance estimates, under predicted mass estimates, and future operational and mission specific requirements (program mass reserve, manager's mass reserve, launch window reserve, performance reserve, etc.)."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://eaton.math.rpi.edu/CSUMS/Papers/EcoEnergy/koojimanconserve.pdf"^^ . "A quantity of mass held by Program/project management to mitigate the risk of over-predicted performance estimates, under predicted mass estimates, and future operational and mission specific requirements (program mass reserve, manager's mass reserve, launch window reserve, performance reserve, etc.)." . "M_{E}" . . "Reserve Mass"@en . . . "Radio-Frequency Power. Power level of electromagnetic waves alternating at the frequency of radio waves (up to 10^10 Hz)."^^ . . . . . . . . . . . . "https://www.analog.com/en/technical-articles/measurement-control-rf-power-parti.html"^^ . "Radio-Frequency Power. Power level of electromagnetic waves alternating at the frequency of radio waves (up to 10^10 Hz)." . . "RF-Power Level"@en . . . "In classical geometry, the \"Radial Distance\" is a coordinate in polar coordinate systems (r, $\\theta$). Basically the radial distance is the scalar Euclidean distance between a point and the origin of the system of coordinates."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Radial_distance_(geometry)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$d = \\sqrt{r_1^2 + r_2^2 -2r_1r_2\\cos{(\\theta_1 - \\theta_2)}}$, where $P_1$ and $P_2$ are two points with polar coordinates $(r_1, \\theta_1)$ and $(r_2, \\theta_2)$, respectively, and $d$ is the distance."^^ . "$r_Q, \\rho$"^^ . . "Radial Distance"@en . . . "\"Radiance\" is a radiometric measure that describes the amount of light that passes through or is emitted from a particular area, and falls within a given solid angle in a specified direction."^^ . . . "0112/2///62720#UAD148" . "http://en.wikipedia.org/wiki/Radiance"^^ . "$L = \\frac{dI}{dA}\\frac{1}{cos\\alpha}$, where $dI$ is the radiant intensity emitted from an element of the surface area $dA$, and angle $\\alpha$ is the angle between the normal to the surface and the given direction."^^ . "\"Radiance\" is a radiometric measure that describes the amount of light that passes through or is emitted from a particular area, and falls within a given solid angle in a specified direction." . . "L" . . "Radiance"@en . . . "Radiance Factor is the ratio of the radiance of the surface element in the given direction to that of a perfect reflecting or transmitting diffuser identically irradiated unit."^^ . . . "http://www.encyclo.co.uk/define/radiance%20factor"^^ . "$\\beta = \\frac{L_n}{L_d}$, where $L_n$ is the radiance of a surface element in a given direction and $L_d$ is the radiance of the perfect reflecting or transmitting diffuser identically irradiated and viewed. Reflectance factor is equivalent to radiance factor or luminance factor (when the cone angle is infinitely small, and is equivalent to reflectance when the cone angle is $2\u03C0 sr$."^^ . "$\\beta$"^^ . "Radiance Factor is the ratio of the radiance of the surface element in the given direction to that of a perfect reflecting or transmitting diffuser identically irradiated unit." . . "Radiance Factor"@en . . "Irradiance and Radiant Emittance are radiometry terms for the power per unit area of electromagnetic radiation at a surface. \"Irradiance\" is used when the electromagnetic radiation is incident on the surface. \"Radiant emmitance\" (or \"radiant exitance\") is used when the radiation is emerging from the surface."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Irradiance"^^ . "$M = \\frac{d\\Phi}{dA}$, where $d\\Phi$ is the radiant flux leaving the element of the surface area $dA$."^^ . "Irradiance and Radiant Emittance are radiometry terms for the power per unit area of electromagnetic radiation at a surface. \"Irradiance\" is used when the electromagnetic radiation is incident on the surface. \"Radiant emmitance\" (or \"radiant exitance\") is used when the radiation is emerging from the surface." . . "Radiant Emmitance"@en . . . "In radiometry,\"Radiant Energy} is the energy of electromagnetic waves. The quantity of radiant energy may be calculated by integrating radiant flux (or power) with respect to time. In nuclear physics, \\textit{Radiant Energy\" is energy, excluding rest energy, of the particles that are emitted, transferred, or received."^^ . "M-L2-PER-T2" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Radiant_energy"^^ . "$Q_e$"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "In radiometry,\"Radiant Energy} is the energy of electromagnetic waves. The quantity of radiant energy may be calculated by integrating radiant flux (or power) with respect to time. In nuclear physics, \\textit{Radiant Energy\" is energy, excluding rest energy, of the particles that are emitted, transferred, or received." . "Q_e" . "R" . . "I\u015F\u0131n\u0131m erkesi"@tr . "Strahlungsenergie"@de . "Tenaga sinaran"@ms . "energia promienista"@pl . "energia radiante"@it . "energia radiante"@pt . "energie z\u00E1\u0159en\u00ED"@cs . "energ\u00EDa radiante"@es . "radiant energy"@en . "\u00E9nergie rayonnante"@fr . "\u044D\u043D\u0435\u0440\u0433\u0438\u044F \u0438\u0437\u043B\u0443\u0447\u0435\u043D\u0438\u044F"@ru . "\u0627\u0646\u0631\u0698\u06CC \u062A\u0627\u0628\u0634\u06CC"@fa . "\u0637\u0627\u0642\u0629 \u0625\u0634\u0639\u0627\u0639\u064A\u0629"@ar . "\u0935\u093F\u0915\u093F\u0930\u0923 \u090A\u0930\u094D\u091C\u093E"@hi . "\u653E\u5C04\u30A8\u30CD\u30EB\u30AE\u30FC"@ja . "\u8F90\u5C04\u80FD"@zh . . . . "\"Radiant Energy Density\", or radiant power, is the radiant energy per unit volume."^^ . . . "http://en.wikipedia.org/wiki/Radiant_energy_density"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31892"^^ . "$w$, $\\rho = \\frac{dQ}{dV}$, where $dQ$ is the radiant energy in an elementary three-dimensional domain, and $dV$ is the volume."^^ . "$w, \\rho$"^^ . "\"Radiant Energy Density\", or radiant power, is the radiant energy per unit volume." . . "Radiant Energy Density"@en . . . "0112/2///62720#UAD149" . . "radiant energy exposure" . . "Radiant exposure is a measure of the total radiant energy incident on a surface per unit area; equal to the integral over time of the radiant flux density. Also known as exposure."^^ . "J-PER-CM2" . . . . . . . . . . . . . . . . . . . . . . . . . . . "0112/2///62720#UAD150" . "http://omlc.ogi.edu/education/ece532/class1/irradiance.html"^^ . "$H = \\int_{0}^{\\Delta t}{E}{dt}$, where $E$ is the irradiance acting during the time interval with duration $\\Delta t$."^^ . "Radiant exposure is a measure of the total radiant energy incident on a surface per unit area; equal to the integral over time of the radiant flux density. Also known as exposure." . "H_e" . . "Radiant Exposure"@en . . . "Radiant fluence rate, or spherical irradiance, is equal to the total radiant flux incident on a small sphere divided by the area of the diametrical cross-section of the sphere."^^ . . . . . . "$H_0 = \\int_{0}^{\\Delta t}{E_0}{dt}$, where $E_0$ is the spherical radiance acting during time interval with duration $\\Delta t$."^^ . "Radiant fluence rate, or spherical irradiance, is equal to the total radiant flux incident on a small sphere divided by the area of the diametrical cross-section of the sphere." . "H_e,0" . . "Radiant Fluence"@en . . "Radiant fluence rate, or spherical irradiance, is equal to the total radiant flux incident on a small sphere divided by the area of the diametrical cross-section of the sphere."^^ . "M-PER-T3" . . . . . . . . . . . . . . . . . . . . . . . . . . "http://goldbook.iupac.org/FT07376.html"^^ . "$E_0 = \\int{L}{d\\Omega}$, where $d\\Omega$ is the solid angle of each elementary beam passing through the given point and $L$ its radiance at that point in the direction of the beam."^^ . "Radiant fluence rate, or spherical irradiance, is equal to the total radiant flux incident on a small sphere divided by the area of the diametrical cross-section of the sphere." . "E_e,0" . . "Radiant Fluence Rate"@en . . . "Radiant Flux, or radiant power, is the measure of the total power of electromagnetic radiation (including infrared, ultraviolet, and visible light). The power may be the total emitted from a source, or the total landing on a particular surface."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Radiant_flux"^^ . "$\\Phi = \\frac{dQ}{dt}$, where $dQ$ is the radiant energy emitted, transferred, or received during a time interval of the duration $dt$."^^ . "$\\phi$"^^ . "Radiant Flux, or radiant power, is the measure of the total power of electromagnetic radiation (including infrared, ultraviolet, and visible light). The power may be the total emitted from a source, or the total landing on a particular surface." . . "Strahlungsfluss"@de . "flusso radiante"@it . "flux \u00E9nerg\u00E9tique"@fr . "moc promieniowania"@pl . "potencia radiante"@es . "pot\u00EAncia radiante"@pt . "radiant flux"@en . "\u0642\u062F\u0631\u0629 \u0625\u0634\u0639\u0627\u0639\u064A\u0629"@ar . "\u653E\u5C04\u30D1\u30EF\u30FC"@ja . "Strahlungsleistung"@de . "flujo radiante"@es . "fluxo energ\u00E9tico"@pt . "moc promienista"@pl . "potenza radiante"@it . "puissance rayonnante"@fr . "radiant power"@en . . . "Radiant Intensity is a measure of the intensity of electromagnetic radiation. It is defined as power per unit solid angle."^^ . . . "0112/2///62720#UAD151" . "http://en.wikipedia.org/wiki/Radiant_intensity"^^ . "$I = \\frac{d\\Phi}{d\\Omega}$, where $d\\Phi$ is the radiant flux leaving the source in an elementary cone containing the given direction with the solid angle $d\\Omega$."^^ . "Radiant Intensity is a measure of the intensity of electromagnetic radiation. It is defined as power per unit solid angle." . . "I" . . "Radiant Intensity"@en . . "\"Radiative Heat Transfer\" is proportional to $(T_1^4 - T_2^4)$ and area of the surface, where $T_1$ and $T_2$ are thermodynamic temperatures of two black surfaces, for non totally black surfaces an additional factor less than 1 is needed."^^ . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Heat_transfer#Radiation"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\Phi_r$"^^ . . "Radiative Heat Transfer"@en . . . . "0112/2///62720#UAD152" . . "radioactive decay" . . "number of spontaneous nuclear transformations in a defined amount of substance during a sufficiently small period of time divided by this period, expressed as a ratio \u2202N/\u2202t, where \u2202N is the expected value for the number of spontaneous transformations from this state within the time period \u2202t"@en . . "Anzahl der spontanen Kernumwandlungen in einer gegebenen Menge eines Stoffes w\u00E4hrend eines hinreichend kleinen Zeitintervalls, dividiert durch dieses Zeitintervall, ausgedr\u00FCckt als Quotient \u2202N/\u2202t, wobei \u2202N der Erwartungswert f\u00FCr die Anzahl der spontanen \u00DCberg\u00E4nge aus diesem Zustand im Zeitintervall \u2202t ist"@de . "0173-1#Z4-BAJ230#002" . . "radioactivity"@en-US . . "Radiosity is the total emitted and reflected radiation leaving a surface."^^ . . . "Radiosity is the total emitted and reflected radiation leaving a surface." . . "Radiosity"@en . . . "In classical geometry, the \"Radius\" of a circle or sphere is any line segment from its center to its perimeter the radius of a circle or sphere is the length of any such segment."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Radius"^^ . . "http://en.wikipedia.org/wiki/Radius"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$r = \\frac{d}{2}$, where $d$ is the circle diameter."^^ . "In classical geometry, the \"Radius\" of a circle or sphere is any line segment from its center to its perimeter the radius of a circle or sphere is the length of any such segment." . "r" . . "Radius"@en . . . "In geometry, the \"Radius of Curvature\", R, of a curve at a point is a measure of the radius of the circular arc which best approximates the curve at that point."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Radius_of_curvature_(mathematics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\rho$"^^ . "In geometry, the \"Radius of Curvature\", R, of a curve at a point is a measure of the radius of the circular arc which best approximates the curve at that point." . . "Radius of Curvature"@en . . . "quantity which uses a temperature scale with a zero value at the absolute temperature zero (0 K) like the Kelvin scale, but, in contrast with it, uses the scale intervals of the Fahrenheit scale"@en . . "0112/2///62720#UAD308" . "Gr\u00F6\u00DFe, die eine Temperaturskala benutzt, die wie die Kelvin-Skala beim absoluten Temperatur-Nullpunkt (0 K) ihren Nullwert hat, jedoch im Gegensatz zu dieser den Skalenabstand der Fahrenheit-Skala verwendet"@de . "0173-1#Z4-BAJ367#002" . . "Rankine temperature" . "Rankine temperature"@en-US . . "difference between the highest and lowest temperatures measured over a certain period of time, divided by this period"@en . . "Unterschied zwischen der h\u00F6chsten und der niedrigsten Temperatur, die \u00FCber eine bestimmte Zeitdauer gemessen wird, dividiert durch diese Zeitdauer"@de . "0173-1#Z4-BAJ416#002" . . "rate of change of temperature"@en-US . . . "0112/2///62720#UAD153" . . "rate of rise of voltage" . . . . . "0112/2///62720#UAD154" . . "ratio" . . "The specific heat ratio of a gas is the ratio of the specific heat at constant pressure, $c_p$, to the specific heat at constant volume, $c_V$. It is sometimes referred to as the \"adiabatic index} or the \\textit{heat capacity ratio} or the \\textit{isentropic expansion factor} or the \\textit{adiabatic exponent} or the \\textit{isentropic exponent\"."^^ . . . "http://en.citizendium.org/wiki/Specific_heat_ratio"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$\\gamma = c_p / c_V$, where $c$ is the specific heat of a gas, $c_p$ is specific heat capacity at constant pressure, $c_V$ is specific heat capacity at constant volume."^^ . "$\\gamma$"^^ . "$\\varkappa$"^^ . . "Ratio of Specific Heat Capacities"@en . . . "\"Reactance\" is the opposition of a circuit element to a change of electric current or voltage, due to that element's inductance or capacitance. A built-up electric field resists the change of voltage on the element, while a magnetic field resists the change of current. The notion of reactance is similar to electrical resistance, but they differ in several respects. Capacitance and inductance are inherent properties of an element, just like resistance."^^ . . "http://dbpedia.org/resource/Electrical_reactance"^^ . . "http://en.wikipedia.org/wiki/Electrical_reactance?oldid=494180019"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-46"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$X = im \\underline{Z}$, where $\\underline{Z}$ is impedance and $im$ denotes the imaginary part."^^ . "\"Reactance\" is the opposition of a circuit element to a change of electric current or voltage, due to that element's inductance or capacitance. A built-up electric field resists the change of voltage on the element, while a magnetic field resists the change of current. The notion of reactance is similar to electrical resistance, but they differ in several respects. Capacitance and inductance are inherent properties of an element, just like resistance." . "X" . . "Reactance"@en . . . "\"Reaction Energy\" in a nuclear reaction, is the sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Nuclear_reaction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Reaction Energy\" in a nuclear reaction, is the sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants." . "Q" . . "Reaction Energy"@en . . . "\"Reactive Power}, for a linear two-terminal element or two-terminal circuit, under sinusoidal conditions, is the quantity equal to the product of the apparent power $S$ and the sine of the displacement angle $\\psi$. The absolute value of the reactive power is equal to the non-active power. The ISO (and SI) unit for reactive power is the voltampere. The special name $\\textit{var}$ and symbol $\\textit{var}$ are given in IEC 60027 1."^^ . . . . . . . . . . . "0112/2///62720#UAD155" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-44"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$Q = lm \\underline{S}$, where $\\underline{S}$ is complex power. Alternatively expressed as: $Q = S \\cdot \\sin \\psi$, where $\\psi$ is the displacement angle."^^ . "Q" . . "Blindleistung"@de . "Jalov\u00FD v\u00FDkon"@cs . "Kuasa reaktif"@ms . "moc bierna"@pl . "potencia reactiva"@es . "potenza reattiva"@it . "pot\u00EAncia reativa"@pt . "puissance r\u00E9active"@fr . "reactive power"@en . "reaktif g\u00FC\u00E7"@tr . "\u0627\u0644\u0642\u062F\u0631\u0629 \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0626\u064A\u0629 \u0627\u0644\u0631\u062F\u0641\u0639\u0644\u064A\u0629;\u0627\u0644\u0631\u062F\u064A\u0629"@ar . "\u062A\u0648\u0627\u0646 \u0631\u0627\u06A9\u062A\u06CC\u0648"@fa . "\u65E0\u529F\u529F\u7387"@zh . "\u7121\u52B9\u96FB\u529B"@ja . . . . "\"Reactivity\" characterizes the deflection of reactor from the critical state."^^ . . . "http://en.wikipedia.org/wiki/Nuclear_chain_reaction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\rho = \\frac{k_{eff} - 1}{k_{eff}}$, where $k_{eff}$ is the effective multiplication factor."^^ . "$\\rho$"^^ . "\"Reactivity\" characterizes the deflection of reactor from the critical state." . . "Reactivity"@en . . "The \"Reactor Time Constant\", also called the reactor period, is the time during which the neutron flux density in a reactor changes by the factor e = 2.718 (e: basis of natural logarithms), when the neutron flux density increases or decreases exponentially."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.euronuclear.org/info/encyclopedia/r/reactor-time-constant.htm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Reactor Time Constant\", also called the reactor period, is the time during which the neutron flux density in a reactor changes by the factor e = 2.718 (e: basis of natural logarithms), when the neutron flux density increases or decreases exponentially." . "T" . . "Reactor Time Constant"@en . . . "quantity whose value is inversely proportional to the resistance value"@en . . "Gr\u00F6\u00DFe, deren Wert sich umgekehrt proportional zum Widerstandswert verh\u00E4lt"@de . "0173-1#Z4-BAJ375#002" . . "reciprocal electric resistance"@en-US . . "multiplicative inverse of energy"@en . . "Kehrwert der Energie"@de . "0173-1#Z4-BAJ417#002" . . "reciprocal energy"@en-US . . "quantity whose value is inversely proportional to the angle value"@en . . "Gr\u00F6\u00DFe, deren Wert sich umgekehrt proportional zum Winkelwert verh\u00E4lt"@de . "0173-1#Z4-BAJ376#002" . . "reciprocal plane angle"@en-US . . "quantity whose value is inversely proportional to the voltage value"@en . . . "Gr\u00F6\u00DFe, deren Wert sich umgekehrt proportional zum Spannungswert verh\u00E4lt"@de . "0173-1#Z4-BAJ371#002" . . "reciprocal voltage"@en-US . . "The \"Recombination Coefficient\" is the rate of recombination of positive ions with electrons or negative ions in a gas, per unit volume, divided by the product of the number of positive ions per unit volume and the number of electrons or negative ions per unit volume."^^ . . . "http://encyclopedia2.thefreedictionary.com/recombination+coefficient"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$-\\frac{dn^+}{dt} = -\\frac{dn^-}{dt} = an^+n^-$, where $n^+$ and $n^-$ are the ion number densities of positive and negative ions, respectively, recombined during an infinitesimal time interval with duration $dt$."^^ . "The \"Recombination Coefficient\" is the rate of recombination of positive ions with electrons or negative ions in a gas, per unit volume, divided by the product of the number of positive ions per unit volume and the number of electrons or negative ions per unit volume." . "a" . . "Recombination Coefficient"@en . . "Reflectance generally refers to the fraction of incident power that is reflected at an interface, while the term \"reflection coefficient\" is used for the fraction of electric field reflected. Reflectance is always a real number between zero and 1.0."^^ . . . . . "http://en.wikipedia.org/wiki/Reflectivity"^^ . "$\\rho = \\frac{\\Phi_t}{\\Phi_m}$, where $\\Phi_t$ is the reflected radiant flux, the reflected luminous flux, or the reflected sound power and $\\Phi_m$ is the incident radiant flux, incident luminous flux, or incident sound power, respectively."^^ . "$\\rho$"^^ . "Reflectance generally refers to the fraction of incident power that is reflected at an interface, while the term \"reflection coefficient\" is used for the fraction of electric field reflected. Reflectance is always a real number between zero and 1.0." . . "Reflectance"@en . . . "Reflectance Factor is the measure of the ability of a surface to reflect light or other electromagnetic radiation, equal to the ratio of the reflected flux to the incident flux."^^ . . . "http://www.thefreedictionary.com/reflectance+factor"^^ . "$R = \\frac{\\Phi_n}{\\Phi_d}$, where $\\Phi_n$ is the radiant flux or luminous flux reflected in the directions delimited by a given cone and $\\Phi_d$ is the flux reflected in the same directions by an identically radiated diffuser of reflectance equal to 1."^^ . "Reflectance Factor is the measure of the ability of a surface to reflect light or other electromagnetic radiation, equal to the ratio of the reflected flux to the incident flux." . "R" . . "Reflectance Factor"@en . . "

For homogeneous and semi-infinite materials, reflectivity is the same as reflectance. Reflectivity is the square of the magnitude of the Fresnel reflection coefficient, which is the ratio of the reflected to incident electric field; as such the reflection coefficient can be expressed as a complex number as determined by the Fresnel equations for a single layer, whereas the reflectance is always a positive real number.

\n\n

For layered and finite media, according to the CIE, reflectivity is distinguished from reflectance by the fact that reflectivity is a value that applies to thick reflecting objects. When reflection occurs from thin layers of material, internal reflection effects can cause the reflectance to vary with surface thickness. Reflectivity is the limit value of reflectance as the sample becomes thick; it is the intrinsic reflectance of the surface, hence irrespective of other parameters such as the reflectance of the rear surface. Another way to interpret this is that the reflectance is the fraction of electromagnetic power reflected from a specific sample, while reflectivity is a property of the material itself, which would be measured on a perfect machine if the material filled half of all space.

"^^ . . . . . "http://en.wikipedia.org/wiki/Reflectivity"^^ . "$\\rho$"^^ . "For homogeneous and semi-infinite materials, reflectivity is the same as reflectance. Reflectivity is the square of the magnitude of the Fresnel reflection coefficient, which is the ratio of the reflected to incident electric field;\u00A0as such the reflection coefficient can be expressed as a complex number as determined by the Fresnel equations for a single layer, whereas the reflectance is always a positive real number.\n\nFor layered and finite media, according to the CIE,\u00A0reflectivity is distinguished from reflectance by the fact that reflectivity is a value that applies to thick reflecting objects. When reflection occurs from thin layers of material, internal reflection effects can cause the reflectance to vary with surface thickness. Reflectivity is the limit value of reflectance as the sample becomes thick; it is the intrinsic reflectance of the surface, hence irrespective of other parameters such as the reflectance of the rear surface. Another way to interpret this is that the reflectance is the fraction of electromagnetic power reflected from a specific sample, while reflectivity is a property of the material itself, which would be measured on a perfect machine if the material filled half of all space." . . "Reflectivity"@en . . . "\"refractive index\" or index of refraction n of a substance (optical medium) is a dimensionless number that describes how light, or any other radiation, propagates through that medium."^^ . . . "http://en.wikipedia.org/wiki/Refractive_index"^^ . "$n = \\frac{c_0}{c}$, where $c_0$ is the speed of light in vacuum, and $c$ is the speed of light in the medium."^^ . "\"refractive index\" or index of refraction n of a substance (optical medium) is a dimensionless number that describes how light, or any other radiation, propagates through that medium." . "n" . . "Brechzahl"@de . "Indeks biasan"@ms . "Index lomu"@cs . "Indice de refrac\u021Bie"@ro . "Wsp\u00F3\u0142czynnik za\u0142amania"@pl . "indice de r\u00E9fraction"@fr . "indice di rifrazione"@it . "k\u0131r\u0131lma indeksi"@tr . "refractive index"@en . "\u00EDndice de refracci\u00F3n"@es . "\u00EDndice refrativo"@pt . "\u041F\u043E\u043A\u0430\u0437\u0430\u0442\u0435\u043B\u044C \u043F\u0440\u0435\u043B\u043E\u043C\u043B\u0435\u043D\u0438\u044F"@ru . "\u0636\u0631\u06CC\u0628 \u0634\u06A9\u0633\u062A"@fa . "\u0645\u0639\u0627\u0645\u0644 \u0627\u0644\u0627\u0646\u0643\u0633\u0627\u0631"@ar . "\u0905\u092A\u0935\u0930\u094D\u0924\u0928\u093E\u0902\u0915"@hi . "\u5C48\u6298\u7387"@ja . "\u6298\u5C04\u7387"@zh . "Brechungsindex"@de . . "\"Relative Atomic Mass \" is a dimensionless physical quantity, the ratio of the average mass of atoms of an element (from a given source) to 1/12 of the mass of an atom of carbon-12 (known as the unified atomic mass unit)"^^ . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Relative_atomic_mass"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "\"Relative Atomic Mass \" is a dimensionless physical quantity, the ratio of the average mass of atoms of an element (from a given source) to 1/12 of the mass of an atom of carbon-12 (known as the unified atomic mass unit)" . "A_r" . . "Relative Atomic Mass"@en . . . "$\\textit{Relative Humidity}$ is the ratio of the partial pressure of water vapor in an air-water mixture to the saturated vapor pressure of water at a prescribed temperature. The relative humidity of air depends not only on temperature but also on the pressure of the system of interest. $\\textit{Relative Humidity}$ is also referred to as $\\textit{Relative Partial Pressure}$. Relative partial pressure is often referred to as $RH$ and expressed in percent."^^ . . . . "http://en.wikipedia.org/wiki/Relative_humidity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$\\varphi = p / p_{sat}$, where $p$ is partial pressure of vapour, $p_{sat}$ is thermodynamic temperature and $V$ is its partial pressure at saturation (at the same temperature). Relative partial pressure is often referred to as $RH$ and expressed in percent. $\\textit{Relative Humidity}$ is also referred to as $\\textit{Relative Partial Pressure}$."^^ . "$\\varphi$"^^ . . "Relative Humidity"@en . . "RH" . . . "Relative Luminous Flux or Relative Luminous Power is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of light emitted, in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light. It is expressed as a percentage or fraction of full power."^^ . . . "true"^^ . . "http://en.wikipedia.org/wiki/Luminous_flux"^^ . "Relative Luminous Flux or Relative Luminous Power is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of light emitted, in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light. It is expressed as a percentage or fraction of full power." . . . . "Relative Luminous Flux"@en . . . "\"Relative Mass Concentration of Vapour\" is one of a number of \"Relative Concentration\" quantities defined by ISO 8000."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$\\varphi = v / v_{sat}$, where $v$ is mass concentration of water vapour, $v_{sat}$ is its mass concentration of water vapour at saturation (at the same temperature). For normal cases, the relative partial pressure may be assumed to be equal to relative mass concentration of vapour."^^ . "$\\varphi$"^^ . "\"Relative Mass Concentration of Vapour\" is one of a number of \"Relative Concentration\" quantities defined by ISO 8000." . . "Relative Mass Concentration of Vapour"@en . . . "The \"Relative Mass Defect\" is the mass defect between the monoisotopic mass of an element and the mass of its A + 1 or its A + 2 isotopic cluster."^^ . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Binding_energy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$B_r = \\frac{B}{m_u}$, where $B$ is the mass defect and $m_u$ is the unified atomic mass constant."^^ . "The \"Relative Mass Defect\" is the mass defect between the monoisotopic mass of an element and the mass of its A + 1 or its A + 2 isotopic cluster." . . . "B_r" . . "Relative Mass Defect"@en . . . . "Relative density, or specific gravity, is the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material."^^ . . . "http://en.wikipedia.org/wiki/Relative_density"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$d = \\frac{\\rho}{\\rho_0}$, where $\\rho$ is mass density of a substance and $\\rho_0$ is the mass density of a reference substance under conditions that should be specified for both substances."^^ . "Relative density, or specific gravity, is the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material." . "d" . . "Relative Mass Density"@en . . "The \"Relative Mass Excess\" is the mass excess between the monoisotopic mass of an element and the mass of its A + 1 or its A + 2 isotopic cluster (extrapolated from relative mass defect)."^^ . . . "http://en.wikipedia.org/wiki/Mass_excess"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\Delta_r = \\frac{\\Delta}{m_u}$, where $\\Delta$ is the mass excess and $m_u$ is the unified atomic mass constant."^^ . "$\\Delta_r$"^^ . "The \"Relative Mass Excess\" is the mass excess between the monoisotopic mass of an element and the mass of its A + 1 or its A + 2 isotopic cluster (extrapolated from relative mass defect)." . . "Relative Mass Excess"@en . . "\"Relative Mass Ratio of Vapour\" is one of a number of \"Relative Concentration\" quantities defined by ISO 8000."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$\\psi = x / x_{sat}$, where $x$ is mass ratio of water vapour to dry gas, $x_{sat}$ is its mass raio of water vapour to dry gas at saturation (at the same temperature)."^^ . "$\\psi$"^^ . "\"Relative Mass Ratio of Vapour\" is one of a number of \"Relative Concentration\" quantities defined by ISO 8000." . . "Relative Mass Ratio of Vapour"@en . . "\"Relative Molecular Mass \" is equivalent to the numerical value of the molecular mass expressed in unified atomic mass units. The molecular mass (m) is the mass of a molecule."^^ . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Molecular_mass#Relative_molecular_mass"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "\"Relative Molecular Mass \" is equivalent to the numerical value of the molecular mass expressed in unified atomic mass units. The molecular mass (m) is the mass of a molecule." . "M_r" . . "Relative Molecular Mass"@en . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$\\varphi = p / p_{sat}$, where $p$ is partial pressure of vapour, $p_{sat}$ is thermodynamic temperature and $V$ is its partial pressure at saturation (at the same temperature). Relative partial pressure is often referred to as $RH$ and expressed in percent. $\\textit{Relative Partial Pressure}$ is also referred to as $\\textit{Relative Humidity}$."^^ . "$\\varphi$"^^ . . "Relative Partial Pressure"@en . "RH" . . . . . . "$rel-pres-coef$"^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$\\alpha_p = \\frac{1}{p}\\left (\\frac{\\partial p}{\\partial T} \\right )_V$, where $p$ is $pressure$, $T$ is thermodynamic temperature and $V$ is volume."^^ . "$\\alpha_p$"^^ . . "Relative Pressure Coefficient"@en . . "\"Relaxation TIme\" is a time constant for exponential decay towards equilibrium."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Relaxation_(physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$\\tau$"^^ . "\"Relaxation TIme\" is a time constant for exponential decay towards equilibrium." . . "Relaxation TIme"@en . . . "\"Reluctance\" or magnetic resistance, is a concept used in the analysis of magnetic circuits. It is analogous to resistance in an electrical circuit, but rather than dissipating electric energy it stores magnetic energy. In likeness to the way an electric field causes an electric current to follow the path of least resistance, a magnetic field causes magnetic flux to follow the path of least magnetic reluctance. It is a scalar, extensive quantity, akin to electrical resistance."^^ . . . "0112/2///62720#UAD159" . "http://en.wikipedia.org/wiki/Magnetic_reluctance"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$R_m = \\frac{U_m}{\\Phi}$, where $U_m$ is magnetic tension, and $\\Phi$ is magnetic flux."^^ . "\"Reluctance\" or magnetic resistance, is a concept used in the analysis of magnetic circuits. It is analogous to resistance in an electrical circuit, but rather than dissipating electric energy it stores magnetic energy. In likeness to the way an electric field causes an electric current to follow the path of least resistance, a magnetic field causes magnetic flux to follow the path of least magnetic reluctance. It is a scalar, extensive quantity, akin to electrical resistance." . "R_m" . . "Reluctance"@en . . . . "quantity whose value is inversely proportional to the length value"@en . . . . . "0112/2///62720#UAD160" . "Gr\u00F6\u00DFe, deren Wert sich umgekehrt proportional zum L\u00E4ngenwert verh\u00E4lt"@de . "0173-1#Z4-BAJ370#002" . . "repetency" . "repetency"@en-US . . "\"Residual Resistivity\" for metals, is the resistivity extrapolated to zero thermodynamic temperature."^^ . . . . . "http://en.wikipedia.org/wiki/Residual-resistance_ratio"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$\\rho_R$"^^ . "\"Residual Resistivity\" for metals, is the resistivity extrapolated to zero thermodynamic temperature." . . "Residual Resistivity"@en . . "The electrical resistance of an object is a measure of its opposition to the passage of a steady electric current."^^ . . . . . . . . . . . "http://dbpedia.org/resource/Resistance"^^ . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-45"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$R = \\frac{u}{i}$, where $u$ is instantaneous voltage and $i$ is instantaneous electric current."^^ . "The electrical resistance of an object is a measure of its opposition to the passage of a steady electric current." . "R" . . "Resistance"@en . . . . . "magnetic flux through the loop, caused by an electric current in the loop, divided by the product of this current and the resistance which prevents the flow of current"@en . . "Magnetfluss durch die Schleife, verursacht durch einen elektrischen Strom in der Schleife, dividiert durch das Produkt aus diesen Strom und dem Widerstand, der diesen Stromfluss behindert"@de . "0173-1#Z4-BAJ411#002" . . "resistance-based inductance"@en-US . . . . "true"^^ . . . . . "Resistance Percentage"@en . . . . . . . . . . . . . . . . . . . . . "Resistance Ratio"@en . . . "\"Resistivity\" is the inverse of the conductivity when this inverse exists."^^ . . . . . . . . . . . . . . "0112/2///62720#UAD161" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-04"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\rho = \\frac{1}{\\sigma}$, if it exists, where $\\sigma$ is conductivity."^^ . "$\\rho$"^^ . "\"Resistivity\" is the inverse of the conductivity when this inverse exists." . . "Resistivity"@en . . . "\"Resonance Energy\" in a nuclear reaction, is the kinetic energy of an incident particle, in the reference frame of the target, corresponding to a resonance in a nuclear reaction."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Nuclear_reaction_analysis"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Resonance Energy\" in a nuclear reaction, is the kinetic energy of an incident particle, in the reference frame of the target, corresponding to a resonance in a nuclear reaction." . "E_r, E_{res}" . . "Resonance Energy"@en . . . "The \"Resonance Escape Probability\" is the fraction of fission neutrons that manage to slow down from fission to thermal energies without being absorbed. In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed."^^ . . . "http://en.wikipedia.org/wiki/Four_factor_formula"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Resonance Escape Probability\" is the fraction of fission neutrons that manage to slow down from fission to thermal energies without being absorbed. In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed." . "p" . . "Resonance Escape Probability"@en . . "Fraction of fission neutrons that manage to slow down from fission to thermal energies without being absorbed."^^ . . . . . . . . . . . . . "Fraction of fission neutrons that manage to slow down from fission to thermal energies without being absorbed." . "p" . . "Resonance Escape Probability For Fission"@en . . . "Respiratory rate (Vf, Rf or RR) is also known by respiration rate, pulmonary ventilation rate, ventilation rate, or breathing frequency is the number of breaths taken within a set amount of time, typically 60 seconds. A normal respiratory rate is termed eupnea, an increased respiratory rate is termed tachypnea and a lower than normal respiratory rate is termed bradypnea."^^ . . "http://dbpedia.org/resource/Respiratory_rate"^^ . . "http://en.wikipedia.org/wiki/Respiratory_rate"^^ . "Respiratory rate (Vf, Rf or RR) is also known by respiration rate, pulmonary ventilation rate, ventilation rate, or breathing frequency is the number of breaths taken within a set amount of time, typically 60 seconds. A normal respiratory rate is termed eupnea, an increased respiratory rate is termed tachypnea and a lower than normal respiratory rate is termed bradypnea." . "Vf, Rf or RR" . . "Respiratory Rate"@en . . "\"Rest Energy\" is the energy equivalent of the rest mass of a body, equal to the rest mass multiplied by the speed of light squared."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Invariant_mass#Rest_energy"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31895"^^ . "For a particle, $E_0 = m_0 c_0^2$, where $m_0$ is the rest mass of that particle, and $c_0$ is the speed of light in vacuum."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Rest Energy\" is the energy equivalent of the rest mass of a body, equal to the rest mass multiplied by the speed of light squared." . "E_0" . . "Rest Energy"@en . . . "The $\\textit{Rest Mass}$, the invariant mass, intrinsic mass, proper mass, or (in the case of bound systems or objects observed in their center of momentum frame) simply mass, is a characteristic of the total energy and momentum of an object or a system of objects that is the same in all frames of reference related by Lorentz transformations. The mass of a particle type X (electron, proton or neutron) when that particle is at rest. For an electron: $m_e = 9,109 382 15(45) 10^{-31} kg$, for a proton: $m_p = 1,672 621 637(83) 10^{-27} kg$, for a neutron: $m_n = 1,674 927 211(84) 10^{-27} kg$. Rest mass is often denoted $m_0$."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Invariant_mass"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31895"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "m_X" . . "Jisim rehat"@ms . "Klidov\u00E1 hmotnost"@cs . "Mirovna masa"@sl . "Ruhemasse"@de . "dinlenme k\u00FCtlesi"@tr . "masa invariante"@es . "masa invariant\u0103"@ro . "masa spoczynkowa"@pl . "massa a riposo"@it . "massa de repouso"@pt . "masse au repos"@fr . "rest mass"@en . "\u0438\u043D\u0432\u0430\u0440\u0438\u0430\u043D\u0442\u043D\u0430\u044F \u043C\u0430\u0441\u0441\u0430"@ru . "\u062C\u0631\u0645 \u0633\u06A9\u0648\u0646"@fa . "\u0643\u062A\u0644\u0629 \u0633\u0627\u0643\u0646\u0629"@ar . "\u0928\u093F\u0936\u094D\u091A\u0930 \u0926\u094D\u0930\u0935\u094D\u092F\u092E\u093E\u0928"@hi . "\u4E0D\u5909\u8CEA\u91CF"@ja . "\u9759\u6B62\u8D28\u91CF"@zh . "Proper Mass" . "invariantna masa"@sl . "lastna masa"@sl . "masa niezmiennicza"@pl . "masse invariante"@fr . "masse propre"@fr . "tr\u00E4ge Masse"@de . "\u043C\u0430\u0441\u0441\u0430 \u043F\u043E\u043A\u043E\u044F"@ru . . . "Reverberation Time is the time required for reflections of a direct sound to decay by 60 dB below the level of the direct sound."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Reverberation"^^ . "Reverberation Time is the time required for reflections of a direct sound to decay by 60 dB below the level of the direct sound." . "T" . "belongs to SOQ-ISO" . . "Reverberation Time"@en . . . "The \"Reynolds Number\" (Re) is a dimensionless number that gives a measure of the ratio of inertial forces to viscous forces and consequently quantifies the relative importance of these two types of forces for given flow conditions."^^ . . "http://dbpedia.org/resource/Reynolds_number"^^ . . "http://en.wikipedia.org/wiki/Reynolds_number"^^ . "$Re = \\frac{\\rho uL}{\\mu} = \\frac{uL}{\\nu}$, where $\\rho$ is mass density, $u$ is speed, $L$ is length, $\\mu$ is dynamic viscosity, and $\\nu$ is kinematic viscosity."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31896"^^ . "The \"Reynolds Number\" (Re) is a dimensionless number that gives a measure of the ratio of inertial forces to viscous forces and consequently quantifies the relative importance of these two types of forces for given flow conditions." . "Re" . . "Reynolds Number"@en . . . . "\"Richardson Constant\" is a constant used in developing thermionic emission current density for a metal."^^ . . . "0112/2///62720#UAD162" . "http://en.wikipedia.org/wiki/Thermionic_emission"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "The thermionic emission current, $J$, for a metal is $J = AT^2\\exp{(-\\frac{\\Phi}{kT})}$, where $T$ is thermodynamic temperature, $k$ is the Boltzmann constant, and $\\Phi$ is a work function."^^ . "\"Richardson Constant\" is a constant used in developing thermionic emission current density for a metal." . "A" . . "Richardson Constant"@en . . "du/dt as time dependent change in voltage"@en . . "du/dt als zeitabh\u00E4ngige \u00E4nderung der Spannung"@de . "0173-1#Z4-BAJ289#003" . . "rise of off-state voltage"@en-US . . "Transverse force on rocket due to an atmosphere"^^ . . . . . . . . . . . . . . . . . . . . . . . . . "Transverse force on rocket due to an atmosphere" . "T" . . "Rocket Atmospheric Transverse Force"@en . . . . . . "0112/2///62720#UAD163" . . "rotary-translatory motion conversion" . . "product of the moment of force M in a time interval multiplied by the duration of this interval"@en . . "Produkt Drehmoment M in einem Zeitintervall mal Dauer dt dieses Zeitintervalls"@de . "0173-1#Z4-BAJ234#002" . . "rotary shock"@en-US . . "\"Rotational Mass\" denotes the inertia of a body with respect to angular acceleration. It is usually measured in kg*m^2."^^ . . . . . . . . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC2/HTML/link/ifcrotationalmassmeasure.htm"^^ . "\"Rotational Mass\" denotes the inertia of a body with respect to angular acceleration. It is usually measured in kg*m^2." . . "Rotational Mass"@en . . "Rotational Stiffness is the extent to which an object resists deformation in response to an applied torque."^^ . . . . . . "Rotational Stiffness is the extent to which an object resists deformation in response to an applied torque." . . "Rotational Stiffness"@en . . . "\"Scalar Magnetic Potential\" is the scalar potential of an irrotational magnetic field strength. The negative of the gradient of the scalar magnetic potential is the irrotational magnetic field strength. The magnetic scalar potential is not unique since any constant scalar field can be added to it without changing its gradient."^^ . . . "0112/2///62720#UAD164" . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-58"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$\\mathbf{H} = -grad V_m$, where $\\mathbf{H}$ is magnetic field strength."^^ . "$\\varphi$"^^ . "\"Scalar Magnetic Potential\" is the scalar potential of an irrotational magnetic field strength. The negative of the gradient of the scalar magnetic potential is the irrotational magnetic field strength. The magnetic scalar potential is not unique since any constant scalar field can be added to it without changing its gradient." . "V_m" . . "Scalar Magnetic Potential"@en . . . "The moment of inertia, also called mass moment of inertia, rotational inertia, polar moment of inertia of mass, or the angular mass is a property of a distribution of mass in space that measures its resistance to rotational acceleration about an axis."^^ . . . . . . . "0112/2///62720#UAD165" . "http://en.wikipedia.org/wiki/Second_moment_of_area"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$I_a = \\int r^2_Q dA$, where $r_Q$ is the radial distance from a $Q-axis$ and $A$ is area."^^ . "The moment of inertia, also called mass moment of inertia, rotational inertia, polar moment of inertia of mass, or the angular mass is a property of a distribution of mass in space that measures its resistance to rotational acceleration about an axis." . "I" . . "Second Axial Moment of Area"@en . . "The second moment of area is a property of a physical object that can be used to predict its resistance to bending and deflection. The deflection of an object under load depends not only on the load, but also on the geometry of the object's cross-section."^^ . . . . . . . "http://en.wikipedia.org/wiki/Second_moment_of_area"^^ . "The second moment of area is a property of a physical object that can be used to predict its resistance to bending and deflection. The deflection of an object under load depends not only on the load, but also on the geometry of the object's cross-section." . "J" . . "Fl\u00E4chentr\u00E4gheitsmoment"@de . "Geometryczny moment bezw\u0142adno\u015Bci"@pl . "Segundo momento de \u00E1rea"@pt . "moment quadratique"@fr . "second moment of area"@en . "secondo momento di area"@it . "segundo momento de \u00E9rea"@es . "\u06AF\u0634\u062A\u0627\u0648\u0631 \u062F\u0648\u0645 \u0633\u0637\u062D"@fa . "\u0915\u094D\u0937\u0947\u0924\u094D\u0930\u092B\u0932 \u0915\u093E \u0926\u094D\u0935\u093F\u0924\u0940\u092F \u0906\u0918\u0942\u0930\u094D\u0923"@hi . "\u622A\u9762\u4E8C\u6B21\u8F74\u77E9"@zh . "\u65AD\u9762\u4E8C\u6B21\u30E2\u30FC\u30E1\u30F3\u30C8"@ja . "momento de in\u00E9rcia de \u00E1rea"@pt . . "A quantity kind that is a proportionality constant that quantifies the relationship between the molar concentrations of the reactants and the rate of a second order chemical reaction."^^ . . . . . "A quantity kind that is a proportionality constant that quantifies the relationship between the molar concentrations of the reactants and the rate of a second order chemical reaction." . . "Reaction Rate Constant"@en . . "The moment of inertia, also called mass moment of inertia, rotational inertia, polar moment of inertia of mass, or the angular mass is a property of a distribution of mass in space that measures its resistance to rotational acceleration about an axis."^^ . . . . . . . "0112/2///62720#UAD166" . "http://en.wikipedia.org/wiki/Second_moment_of_area"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$I_p = \\int r^2_Q dA$, where $r_Q$ is the radial distance from a $Q-axis$ and $A$ is area."^^ . "The moment of inertia, also called mass moment of inertia, rotational inertia, polar moment of inertia of mass, or the angular mass is a property of a distribution of mass in space that measures its resistance to rotational acceleration about an axis." . "I" . . "Second Polar Moment of Area"@en . . "constant in Planck's radiation law on the dependence of the spectral density of various radiation variables on the wavelength of the electromagnetic radiation and the absolute temperature of the black radiator, derived from the product of Planck's quantum of action times the velocity of light in relation to Boltzmann's constant"@en . . "Konstante im Planckschen Strahlungsgesetz \u00FCber die Abh\u00E4ngigkeit der spektralen Dichte verschiedener Strahlungsgr\u00F6\u00DFen von der Wellenl\u00E4nge der elektromagnetischen Strahlung und der absoluten Temperatur beim schwarzen Strahler, welche sich zusammensetzt aus dem Produkt Plancksches Wirkungsquantum mal Lichtgeschwindigkeit bezogen auf die Boltzmann-Konstante"@de . "0173-1#Z4-BAJ428#001" . . "second radiation constant"@en-US . . "Mass ratio for the second stage of a multistage launcher."^^ . . . . . . . . . . . . . . "Mass ratio for the second stage of a multistage launcher." . "R_2" . . "Second Stage Mass Ratio"@en . . . "The sectional area integral measure is typically used in torsional analysis. It is usually measured in M\u2075."^^ . . . "https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/link/ifcsectionalareaintegralmeasure.htm"^^ . "The sectional area integral measure is typically used in torsional analysis. It is usually measured in M\u2075." . . "Section Area Integral"@en . . "The Section Modulus is a geometric property for a given cross-section used in the design of beams or flexural members."^^ . . . . . "http://en.wikipedia.org/wiki/Section_modulus"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$Z = \\frac{I_a}{(r_Q)_{max}}$, where $I_a$ is the second axial moment of area and $(r_Q)_{max}$ is the maximum radial distance of any point in the surface considered from the $Q-axis$ with respect to which $I_a$ is defined."^^ . "The Section Modulus is a geometric property for a given cross-section used in the design of beams or flexural members." . "Z" . . "Section Modulus"@en . . "\"Seebeck Coefficient\", or thermopower, or thermoelectric power of a material is a measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference across that material."^^ . . . "0112/2///62720#UAD169" . "http://en.wikipedia.org/wiki/Thermopower"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$S_{ab} = \\frac{dE_{ab}}{dT}$, where $E_{ab}$ is the thermosource voltage between substances a and b, $T$ is the thermodynamic temperature of the hot junction."^^ . "\"Seebeck Coefficient\", or thermopower, or thermoelectric power of a material is a measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference across that material." . "S_{ab}" . . "Seebeck Coefficient"@en . . . . . . "Serum or Plasma Level"@en . . . "Information entropy applied to a collection of indiviual organisms [of selected species] in a sample area. A measure of biodiversity."^^ . . . . . . . . . . . . . . . . . . . . . "Information entropy applied to a collection of indiviual organisms [of selected species] in a sample area. A measure of biodiversity." . . "Shannon Diversity Index"@en . . . "The Shear Modulus or modulus of rigidity, denoted by $G$, or sometimes $S$ or $\\mu$, is defined as the ratio of shear stress to the shear strain."^^ . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Shear_modulus"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$G = \\frac{\\tau}{\\gamma}$, where $\\tau$ is the shear stress and $\\gamma$ is the shear strain."^^ . "G" . . "Shear Modulus"@en . . "Shear Strain is the amount of deformation perpendicular to a given line rather than parallel to it. "^^ . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Deformation_(mechanics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\gamma = \\frac{\\Delta x}{d}$, where $\\Delta x$ is the parallel displacement between two surfaces of a layer of thickness $d$."^^ . "$\\gamma$"^^ . "Shear Strain is the amount of deformation perpendicular to a given line rather than parallel to it. " . . "Shear Strain"@en . . . "Shear stress occurs when the force occurs in shear, or perpendicular to the normal."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Stress_(mechanics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\tau = \\frac{dF_t}{dA}$, where $dF_t$ is the tangential component of force and $dA$ is the area of the surface element."^^ . "$\\tau$"^^ . "Shear stress occurs when the force occurs in shear, or perpendicular to the normal." . . "Shear Stress"@en . . . "\"Short-Range Order Parameter\" is the fraction of the nearest-neighbor atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$r, \\sigma$"^^ . "\"Short-Range Order Parameter\" is the fraction of the nearest-neighbor atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction." . . "Short-Range Order Parameter"@en . . . . . "Signal Detection Threshold"@en . . "In telecommunications, particularly in radio, signal strength refers to the magnitude of the electric field at a reference point that is a significant distance from the transmitting antenna. It may also be referred to as received signal level or field strength. Typically, it is expressed in voltage per length or signal power received by a reference antenna. High-powered transmissions, such as those used in broadcasting, are expressed in dB-millivolts per metre (dBmV/m)."^^ . . . . . . . . . . . "http://dbpedia.org/resource/Signal_strength"^^ . . "In telecommunications, particularly in radio, signal strength refers to the magnitude of the electric field at a reference point that is a significant distance from the transmitting antenna. It may also be referred to as received signal level or field strength. Typically, it is expressed in voltage per length or signal power received by a reference antenna. High-powered transmissions, such as those used in broadcasting, are expressed in dB-millivolts per metre (dBmV/m)." . . "Signal Strength"@en . . . . . . . . . . . . . . . . . "R_o" . . "Single Stage Launcher Mass Ratio"@en . . . "\"Slowing-Down Area\" in an infinite homogenous medium, is one-sixth of the mean square distance between the neutron source and the point where a neutron reaches a given energy."^^ . . . . . . . . . . . . . . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Slowing-Down Area\" in an infinite homogenous medium, is one-sixth of the mean square distance between the neutron source and the point where a neutron reaches a given energy." . "L_s^2" . . "Slowing-Down Area"@en . . . "\"Slowing-Down Density\" is a measure of the rate at which neutrons lose energy in a nuclear reactor through collisions; equal to the number of neutrons that fall below a given energy per unit volume per unit time."^^ . . . . "0112/2///62720#UAD170" . "http://encyclopedia2.thefreedictionary.com/slowing-down+density"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$q = -\\frac{dn}{dt}$, where $n$ is the number density and $dt$ is the duration."^^ . "\"Slowing-Down Density\" is a measure of the rate at which neutrons lose energy in a nuclear reactor through collisions; equal to the number of neutrons that fall below a given energy per unit volume per unit time." . "q" . . "Slowing-Down Density"@en . . "\"Slowing-Down Length\" is the average straight-line distance that a fast neutron will travel between its introduction into the slowing-downmedium (moderator) and thermalization."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://nuclearpowertraining.tpub.com/h1013v2/css/h1013v2_32.htm"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Slowing-Down Length\" is the average straight-line distance that a fast neutron will travel between its introduction into the slowing-downmedium (moderator) and thermalization." . "L_s" . . "Slowing-Down Length"@en . . . "A specific volume that is the ratio of the amount of substance adsorbed per unit weight of organic carbon in the soil or sediment to the concentration of the chemical in aqueous solution at equilibrium."^^ . . . . . . . . . . . "A specific volume that is the ratio of the amount of substance adsorbed per unit weight of organic carbon in the soil or sediment to the concentration of the chemical in aqueous solution at equilibrium." . . "Soil Adsorption Coefficient"@en . . . "The solid angle subtended by a surface S is defined as the surface area of a unit sphere covered by the surface S's projection onto the sphere. A solid angle is related to the surface of a sphere in the same way an ordinary angle is related to the circumference of a circle. Since the total surface area of the unit sphere is 4*pi, the measure of solid angle will always be between 0 and 4*pi."^^ . . . . "http://dbpedia.org/resource/Solid_angle"^^ . . "0112/2///62720#UAD171" . "The solid angle subtended by a surface S is defined as the surface area of a unit sphere covered by the surface S's projection onto the sphere. A solid angle is related to the surface of a sphere in the same way an ordinary angle is related to the circumference of a circle. Since the total surface area of the unit sphere is 4*pi, the measure of solid angle will always be between 0 and 4*pi." . . . . . "Prostorov\u00FD \u00FAhel"@cs . "Raumwinkel"@de . "Sudut padu"@ms . "angle solide"@fr . "angolo solido"@it . "angulus solidus"@la . "kat\u0131 cisimdeki a\u00E7\u0131"@tr . "k\u0105t bry\u0142owy"@pl . "prostorski kot"@sl . "solid angle"@en . "t\u00E9rsz\u00F6g"@hu . "unghi solid"@ro . "\u00E1ngulo s\u00F3lido"@es . "\u00E2ngulo s\u00F3lido"@pt . "\u03A3\u03C4\u03B5\u03C1\u03B5\u03AC \u03B3\u03C9\u03BD\u03AF\u03B1"@el . "\u041F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432\u0435\u043D \u044A\u0433\u044A\u043B"@bg . "\u0422\u0435\u043B\u0435\u0441\u043D\u044B\u0439 \u0443\u0433\u043E\u043B"@ru . "\u05D6\u05D5\u05D5\u05D9\u05EA \u05DE\u05E8\u05D7\u05D1\u05D9\u05EA"@he . "\u0627\u0644\u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u0635\u0644\u0628\u0629"@ar . "\u0632\u0627\u0648\u06CC\u0647 \u0641\u0636\u0627\u06CC\u06CC"@fa . "\u0906\u092F\u0924\u0928"@hi . "\u7ACB\u4F53\u89D2"@ja . "\u7ACB\u4F53\u89D2\u5EA6"@zh . . . "\"Solid State Diffusion Length\" is the average distance traveled by a particle, such as a minority carrier in a semiconductor "^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://pveducation.org/pvcdrom/pn-junction/diffusion-length"^^ . "$L = \\sqrt{D\\tau}$, where $D$ is the diffusion coefficient and $\\tau$ is lifetime."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Solid State Diffusion Length\" is the average distance traveled by a particle, such as a minority carrier in a semiconductor " . "L, L_n, L_p" . . "Diffusion Length (Solid State Physics)"@en . . . "An amount of substance per unit volume that is the concentration of a saturated solution expressed as the ratio of the solute concentration over the volume of water. A substance's solubility fundamentally depends on several physical and chemical properties of the solution as well as the environment it is in."^^ . . . . . . . . . . . . "An amount of substance per unit volume that is the concentration of a saturated solution expressed as the ratio of the solute concentration over the volume of water. A substance's solubility fundamentally depends on several physical and chemical properties of the solution as well as the environment it is in." . . "Water Solubility"@en . . . "Sound energy density is the time-averaged sound energy in a given volume divided by that volume. The sound energy density or sound density (symbol $E$ or $w$) is an adequate measure to describe the sound field at a given point as a sound energy value."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Sound_energy_density"^^ . "$E = \\frac{I}{c}$, where $I$ is the sound intensity in $\\frac{W}{m^2}$ and $c$ is the sound speed in $\\frac{m}{s}$."^^ . "E" . "belongs to SOQ-ISO" . . "Sound energy density"@en . . . "Sound Exposure is the energy of the A-weighted sound calculated over the measurement time(s). For a given period of time, an increase of 10 dB(A) in sound pressure level corresponds to a tenfold increase in E."^^ . . . "0112/2///62720#UAD172" . "http://www.acoustic-glossary.co.uk/definitions-s.htm"^^ . "$E = \\int_{t1}^{t2}p^2dt$, where $t1$ and $t2$ are the starting and ending times for the integral and $p$ is the sound pressure."^^ . "Sound Exposure is the energy of the A-weighted sound calculated over the measurement time(s). For a given period of time, an increase of 10 dB(A) in sound pressure level corresponds to a tenfold increase in E." . "E" . "belongs to SOQ-ISO" . . "Sound exposure"@en . . "Sound Exposure Level abbreviated as $SEL$ and $LAE$, is the total noise energy produced from a single noise event, expressed as a logarithmic ratio from a reference level."^^ . . . . . . . . "http://www.diracdelta.co.uk/science/source/s/o/sound%20exposure%20level/source.html"^^ . "$L_E = 10 \\log_{10} \\frac{E}{E_0} dB$, where $E$ is sound power and the reference value is $E_0 = 400 \\mu Pa^2 s$."^^ . "L" . "belongs to SOQ-ISO" . . "Sound exposure level"@en . . "Sound intensity or acoustic intensity ($I$) is defined as the sound power $P_a$ per unit area $A$. The usual context is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity."^^ . "w/m2" . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Sound_intensity"^^ . "$I = pv$, where $p$ is the sound pressure and $v$ is sound particle velocity."^^ . "Sound intensity or acoustic intensity ($I$) is defined as the sound power $P_a$ per unit area $A$. The usual context is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity." . "I" . "belongs to SOQ-ISO" . . "Sound intensity"@en . . . "In a compressible sound transmission medium - mainly air - air particles get an accelerated motion: the particle acceleration or sound acceleration with the symbol a in $m/s2$. In acoustics or physics, acceleration (symbol: $a$) is defined as the rate of change (or time derivative) of velocity."^^ . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Particle_acceleration"^^ . "$a = \\frac{\\partial v}{\\partial t}$, where $v$ is sound particle velocity and $t$ is time."^^ . "a" . "belongs to SOQ-ISO" . . "Sound particle acceleration"@en . . . "Sound Particle Displacement is the nstantaneous displacement of a particle in a medium from what would be its position in the absence of sound waves."^^ . "l" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Particle_displacement"^^ . "Sound Particle Displacement is the nstantaneous displacement of a particle in a medium from what would be its position in the absence of sound waves." . "\u03BE" . "belongs to SOQ-ISO" . . "Sound Particle Displacement"@en . . . "Sound Particle velocity is the velocity v of a particle (real or imagined) in a medium as it transmits a wave. In many cases this is a longitudinal wave of pressure as with sound, but it can also be a transverse wave as with the vibration of a taut string. When applied to a sound wave through a medium of a fluid like air, particle velocity would be the physical speed of a parcel of fluid as it moves back and forth in the direction the sound wave is travelling as it passes."^^ . . . . "http://en.wikipedia.org/wiki/Particle_velocity"^^ . "$v = \\frac{\\partial\\delta }{\\partial t}$, where $\\delta$ is sound particle displacement and $t$ is time."^^ . "Sound Particle velocity is the velocity v of a particle (real or imagined) in a medium as it transmits a wave. In many cases this is a longitudinal wave of pressure as with sound, but it can also be a transverse wave as with the vibration of a taut string. When applied to a sound wave through a medium of a fluid like air, particle velocity would be the physical speed of a parcel of fluid as it moves back and forth in the direction the sound wave is travelling as it passes." . "v" . "belongs to SOQ-ISO" . . "Schallschnelle"@de . "pr\u0119dko\u015B\u0107 akustyczna"@pl . "sound particle velocity"@en . "velocidad ac\u00FAstica de una part\u00EDcula"@es . "velocidade ac\u00FAstica de uma part\u00EDcula"@pt . "velocit\u00E0 di spostamento"@it . "vitesse acoustique d\u2018une particule"@fr . "\u0633\u0631\u0639\u0629 \u062C\u0633\u064A\u0645"@ar . "\u7C92\u5B50\u901F\u5EA6"@ja . "pr\u0119dko\u015B\u0107 cz\u0105stki"@pl . . . "Sound power or acoustic power $P_a$ is a measure of sonic energy $E$ per time $t$ unit. It is measured in watts and can be computed as sound intensity ($I$) times area ($A$)."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Sound_power"^^ . "$P_a = IA$, where $I$ is the sound intensity in $\\frac{W}{m^2}$ and $A$ is the area in $m^2$."^^ . "P" . "belongs to SOQ-ISO" . . "Schallleistung"@de . "moc akustyczna"@pl . "potencie ac\u00FAstica"@es . "potenza sonora"@it . "pot\u00EAncia ac\u00FAstica"@pt . "puissance acoustique"@fr . "sound power"@en . "\u0437\u0432\u0443\u043A\u043E\u0432\u0430\u044F \u043C\u043E\u0449\u043D\u043E\u0441\u0442\u044C"@ru . "\u0627\u0644\u0642\u062F\u0631\u0629 \u0627\u0644\u0635\u0648\u062A\u064A\u0629"@ar . "\u97F3\u6E90\u306E\u97F3\u97FF\u51FA\u529B"@ja . "pot\u00EAncia sonora"@pt . . . "Sound Power Level abbreviated as $SWL$ expresses sound power more practically as a relation to the threshold of hearing - 1 picoW - in a logarithmic scale."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Sound_power#Sound_power_level"^^ . "$L_W = 10 \\log_{10} \\frac{P}{P_0} dB$, where $P$ is sound power and the reference value is $P_0 =1pW$."^^ . "L" . "belongs to SOQ-ISO" . . "Sound power level"@en . . "Sound Pressure is the difference between instantaneous total pressure and static pressure."^^ . "p" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Static_pressure"^^ . "Sound Pressure is the difference between instantaneous total pressure and static pressure." . "p" . "belongs to SOQ-ISO" . . "Sound pressure"@en . . . "Sound pressure level ($SPL$) or sound level is a logarithmic measure of the effective sound pressure of a sound relative to a reference value. It is measured in decibels (dB) above a standard reference level."^^ . . . . . . . . . "http://en.wikipedia.org/wiki/Sound_pressure#Sound_pressure_level"^^ . "$L_P = 10 \\log_{10} \\frac{p^2}{p_0^2} dB$, where $p$ is sound pressure and the reference value in airborne acoustics is $p_0 = 20 \\mu Pa$."^^ . "L" . "belongs to SOQ-ISO" . . "Hladina akustick\u00E9ho tlaku"@cs . "Schalldruckpegel"@de . "Tahap medan"@ms . "gerilim veya ak\u0131m oran\u0131"@tr . "livello di pressione sonora"@it . "miary wielko\u015Bci ilorazowych"@pl . "niveau de pression acoustique"@fr . "nivel de presi\u00F3n sonora"@es . "n\u00EDvel de press\u00E3o ac\u00FAstica"@pt . "sound pressure level"@en . "\u0443\u0440\u043E\u0432\u0435\u043D\u044C \u0437\u0432\u0443\u043A\u043E\u0432\u043E\u0433\u043E \u0434\u0430\u0432\u043B\u0435\u043D\u0438\u044F"@ru . "\u0633\u0637\u062D \u06CC\u06A9 \u06A9\u0645\u06CC\u062A \u062A\u0648\u0627\u0646-\u0631\u06CC\u0634\u0647"@fa . "\u0643\u0645\u064A\u0629 \u062C\u0630\u0631 \u0627\u0644\u0637\u0627\u0642\u0629"@ar . "\u5229\u5F97"@ja . "\u58F0\u538B\u7EA7"@zh . "Tahap tekanan bunyi"@ms . . "The Sound Reduction Index is used to measure the level of sound insulation provided by a structure such as a wall, window, door, or ventilator."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Sound_reduction_index"^^ . "$R = 10 \\log (\\frac{1}{\\tau}) dB$, where $\\tau$ is the transmission factor."^^ . "The Sound Reduction Index is used to measure the level of sound insulation provided by a structure such as a wall, window, door, or ventilator." . "R" . "belongs to SOQ-ISO" . . "Sound reduction index"@en . . "Sound Volume Velocity is the product of particle velocity $v$ and the surface area $S$ through which an acoustic wave of frequency $f$ propagates. Also, the surface integral of the normal component of the sound particle velocity over the cross-section (through which the sound propagates). It is used to calculate acoustic impedance."^^ . . . "http://en.wikipedia.org/wiki/Acoustic_impedance"^^ . "$q= vS$, where $v$ is sound particle velocity and $S$ is the surface area through which an acoustic wave of frequence $f$ propagates."^^ . "q" . "belongs to SOQ-ISO" . . "Sound volume velocity"@en . . "\"Source Voltage}, also referred to as \\textit{Source Tension\" is the voltage between the two terminals of a voltage source when there is no\n\nelectric current through the source. The name \"electromotive force} with the abbreviation \\textit{EMF\" and the symbol $E$ is deprecated."^^ . . . . . . . . . . . . . . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "U_s" . . "Source Voltage"@en . . . "\"Source Voltage Between Substances\" is the source voltage between substance a and b."^^ . . . . . . . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Source Voltage Between Substances\" is the source voltage between substance a and b." . "E_{ab}" . . "Source Voltage Between Substances"@en . . . "\"Spatial Summation Function\" is he ability to produce a composite signal from the signals coming into the eyes from different directions."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Summation_(neurophysiology)#Spatial_summation"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Spatial Summation Function\" is he ability to produce a composite signal from the signals coming into the eyes from different directions." . . "Spatial Summation Function"@en . . . . . . . "Specific Acoustic Impedance"@en . . "The \"Specific Activity\" is the number of decays per unit time of a radioactive sample. The SI unit of radioactive activity is the becquerel (Bq), in honor of the scientist Henri Becquerel."^^ . . . . . . . . . "http://en.wikipedia.org/wiki/Specific_activity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$a = \\frac{A}{m}$, where $A$ is the activity of a sample and $m$ is its mass."^^ . "The \"Specific Activity\" is the number of decays per unit time of a radioactive sample. The SI unit of radioactive activity is the becquerel (Bq), in honor of the scientist Henri Becquerel." . "a" . . "Specific Activity"@en . . "Electric charge (often capacity in the context of electrochemical cells) relativ to the mass (often only active components). capacity "^^ . . . "Electric charge (often capacity in the context of electrochemical cells) relativ to the mass (often only active components). capacity " . . "Specific Electric Charge"@en . . "\"Specific Electric Current\" is a measure to specify the applied current relative to a corresponding mass. This measure is often used for standardization within electrochemistry."^^ . . . . "Specific Electrical Current"@en . . "\\(\\textbf{Specific Energy}\\) is defined as the energy per unit mass. Common metric units are \\(J/kg\\). It is an intensive property. Contrast this with energy, which is an extensive property. There are two main types of specific energy: potential energy and specific kinetic energy. Others are the \\(\\textbf{gray}\\) and \\(\\textbf{sievert}\\), which are measures for the absorption of radiation. The concept of specific energy applies to a particular or theoretical way of extracting useful energy from the material considered that is usually implied by context. These intensive properties are each symbolized by using the lower case letter of the symbol for the corresponding extensive property, which is symbolized by a capital letter. For example, the extensive thermodynamic property enthalpy is symbolized by \\(H\\); specific enthalpy is symbolized by \\(h\\)."^^ . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Specific_energy"^^ . . "http://en.citizendium.org/wiki/Enthalpy"^^ . "http://en.wikipedia.org/wiki/Specific_energy"^^ . "$e = E/m$, where $E$ is energy and $m$ is mass."^^ . . "e" . . "Specific Energy"@en . . . . . . . . . . . "The \"Specific Energy Imparted\", is the energy imparted to an element of irradiated matter divided by the mass, dm, of that element."^^ . . . . . . . . . . . . . . . . "http://www.answers.com/topic/energy-imparted"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "For ionizing radiation, $z = \\frac{\\varepsilon}{m}$, where $\\varepsilon$ is the energy imparted to irradiated matter and $m$ is the mass of that matter."^^ . "The \"Specific Energy Imparted\", is the energy imparted to an element of irradiated matter divided by the mass, dm, of that element." . "z" . . "Specific Energy Imparted"@en . . . "$\\textit{Specific Enthalpy}$ is enthalpy per mass of substance involved. Specific enthalpy is denoted by a lower case h, with dimension of energy per mass (SI unit: joule/kg). In thermodynamics, $\\textit{enthalpy}$ is the sum of the internal energy U and the product of pressure p and volume V of a system: $H = U + pV$. The internal energy U and the work term pV have dimension of energy, in SI units this is joule; the extensive (linear in size) quantity H has the same dimension."^^ . . . "http://dbpedia.org/resource/Entropy"^^ . . "http://en.citizendium.org/wiki/Enthalpy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$h = H/m$, where $H$ is enthalpy and $m$ is mass."^^ . "h" . . "Specific Enthalpy"@en . . . . . . . . . "\"Specific Entropy\" is entropy per unit of mass."^^ . . . . . . . . . . . . . "http://dbpedia.org/resource/Entropy"^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$s = S/m$, where $S$ is entropy and $m$ is mass."^^ . "\"Specific Entropy\" is entropy per unit of mass." . "s" . . "Specific Entropy"@en . . . "Energy has corresponding intensive (size-independent) properties for pure materials. A corresponding intensive property is \"Specific Gibbs Energy}, which is \\textit{Gibbs Energy} per mass of substance involved. \\textit{Specific Gibbs Energy\" is denoted by a lower case g, with dimension of energy per mass (SI unit: joule/kg)."^^ . . . . "http://en.citizendium.org/wiki/Enthalpy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$g = G/m$, where $G$ is Gibbs energy and $m$ is mass."^^ . "Energy has corresponding intensive (size-independent) properties for pure materials. A corresponding intensive property is \"Specific Gibbs Energy}, which is \\textit{Gibbs Energy} per mass of substance involved. \\textit{Specific Gibbs Energy\" is denoted by a lower case g, with dimension of energy per mass (SI unit: joule/kg)." . "g" . . "Specific Gibbs Energy"@en . . . . . . . . "\"Specific Heat Capacity} of a solid or liquid is defined as the heat required to raise unit mass of substance by one degree of temperature. This is \\textit{Heat Capacity} divied by \\textit{Mass\". Note that there are corresponding molar quantities."^^ . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Specific_heat_capacity"^^ . . "http://www.taftan.com/thermodynamics/CP.HTM"^^ . "\"Specific Heat Capacity} of a solid or liquid is defined as the heat required to raise unit mass of substance by one degree of temperature. This is \\textit{Heat Capacity} divied by \\textit{Mass\". Note that there are corresponding molar quantities." . . "c" . . "Specific Heat Capacity"@en . . . . . . . "Specific heat at a constant pressure."^^ . . . . . . . . . . . . . . "Specific heat at a constant pressure." . "c_p" . . "Specific heat capacity at constant pressure"@en . . . . . "Specific heat per constant volume."^^ . . . . . . . . . . . . . . "Specific heat per constant volume." . "c_v" . . "Specific heat capacity at constant volume"@en . . . . . "Specific heat per constant volume."^^ . . . . . . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "Specific heat per constant volume." . "c_{sat}" . . "Specific Heat Capacity at Saturation"@en . . . . . "Specific heat at a constant pressure."^^ . . . "Specific heat at a constant pressure." . . "Specific Heat Pressure"@en . . "Specific heat per constant volume."^^ . . . "Specific heat per constant volume." . . "Specific Heat Volume"@en . . "The ratio of specific heats, for the exhaust gases adiabatic gas constant, is the relative amount of compression/expansion energy that goes into temperature $T$ versus pressure $P$ can be characterized by the heat capacity ratio: $\\gamma\\frac{C_P}{C_V}$, where $C_P$ is the specific heat (also called heat capacity) at constant pressure, while $C_V$ is the specific heat at constant volume. "^^ . . . . . . . . . . . . . . . . "$\\gamma$"^^ . . "Specific Heats Ratio"@en . . . "Energy has corresponding intensive (size-independent) properties for pure materials. A corresponding intensive property is $\\textit{Specific Helmholtz Energy}$, which is $\\textit{Helmholz Energy}$ per mass of substance involved.$ \\textit{Specific Helmholz Energy}$ is denoted by a lower case u, with dimension of energy per mass (SI unit: joule/kg)."^^ . . . . "http://en.citizendium.org/wiki/Enthalpy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$a = A/m$, where $A$ is Helmholtz energy and $m$ is mass."^^ . "a" . . "Specific Helmholtz Energy"@en . . . . . . . . "The impulse produced by a rocket divided by the mass $mp$ of propellant consumed. Specific impulse ${I_{sp}}$ is a widely used measure of performance for chemical, nuclear, and electric rockets. It is usually given in seconds for both U.S. Customary and International System (SI) units. The impulse produced by a rocket is the thrust force $F$ times its duration $t$ in seconds. $I_{sp}$ is the thrust per unit mass flowrate, but with $g_o$, is the thrust per weight flowrate. The specific impulse is given by the equation: $I_{sp} = \\frac{F}{\\dot{m}g_o}$."^^ . . "http://www.grc.nasa.gov/WWW/K-12/airplane/specimp.html"^^ . . "Specific Impulse"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Specific Impulse by Mass"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Specific Impulse by Weight"@en . . . . "Energy has corresponding intensive (size-independent) properties for pure materials. A corresponding intensive property is specific internal energy, which is energy per mass of substance involved. Specific internal energy is denoted by a lower case u, with dimension of energy per mass (SI unit: joule/kg)."^^ . . . . "0112/2///62720#UAD173" . "http://en.citizendium.org/wiki/Enthalpy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$u = U/m$, where $U$ is thermodynamic energy and $m$ is mass."^^ . "Energy has corresponding intensive (size-independent) properties for pure materials. A corresponding intensive property is specific internal energy, which is energy per mass of substance involved. Specific internal energy is denoted by a lower case u, with dimension of energy per mass (SI unit: joule/kg)." . "u" . . "Specific Internal Energy"@en . . . . . . . . . "

Specific modulus is a materials property consisting of the elastic modulus per mass density of a material. It is also known as the stiffness to weight ratio or specific stiffness. High specific modulus materials find wide application in aerospace applications where minimum structural weight is required. The dimensional analysis yields units of distance squared per time squared.

"^^ . . . . "http://dbpedia.org/resource/Specific_modulus"^^ . . "https://en.wikipedia.org/wiki/Specific_modulus"^^ . "$specific modulus = E/\\rho$, where $E$ is elastic modulus and $\\rho$ is density."^^ . . "Specific Modulus"@en . "Specific Stiffness"@en . "Stiffness to Weight Ratio"@en . . "material-specific quantity, which results as angle of rotation of a substance for a defined wavelength and a defined temperature from the relation: quotient of measured angle of rotation divided by the mass concentration and the radiographed distance"@en . . "0112/2///62720#UAD174" . "materialspezifische Gr\u00F6\u00DFe, die sich als Drehwinkel einer Substanz f\u00FCr eine bestimmte Wellenl\u00E4nge und eine bestimmte Temperatur ergibt durch die Beziehung: Quotient aus gemessener Drehwinkel dividiert durch die Massenkonzentration und die durchstrahlte Wegstrecke"@de . "0173-1#Z4-BAJ425#001" . . "specific optical rotational ability" . "specific optical rotational ability"@en-US . . "The \"Specific Optical Rotatory Power\" Angle of optical rotation divided by the optical path length through the medium and by the mass concentration of the substance giving the specific optical rotatory power."^^ . . . "http://goldbook.iupac.org/O04313.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\alpha_m = \\alpha \\frac{A}{m}$, where $\\alpha$ is the angle of optical rotation, and $m$ is the mass of the optically active component in the path of a linearly polarized light beam of cross sectional area $A$."^^ . "$\\alpha_m$"^^ . "The \"Specific Optical Rotatory Power\" Angle of optical rotation divided by the optical path length through the medium and by the mass concentration of the substance giving the specific optical rotatory power." . . "Specific Optical Rotatory Power"@en . . "Specific power, also known as power-to-weight ratio, is the amount of power output per unit mass of the power source. It is generally used to measure the performance of that power source. The higher the ratio, the more power a system produces relative to its weight. It's commonly used in the automotive and aerospace industries to compare the performance of different engines. It's generally measured in watts per kilogram (W/kg) or horsepower per pound (hp/lb)."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "https://en.wikipedia.org/wiki/Power-to-weight_ratio"^^ . "Specific power, also known as power-to-weight ratio, is the amount of power output per unit mass of the power source. It is generally used to measure the performance of that power source. The higher the ratio, the more power a system produces relative to its weight. It's commonly used in the automotive and aerospace industries to compare the performance of different engines. It's generally measured in watts per kilogram (W/kg) or horsepower per pound (hp/lb)." . . "Specific Power"@en . "Power-to-Weight Ratio"@en . . "Specific surface area (SSA) is a property of solids defined as the total surface area (SA) of a material per unit mass, (with units of m2/kg or m2/g). It is a physical value that can be used to determine the type and properties of a material (e.g. soil or snow). It has a particular importance for adsorption, heterogeneous catalysis, and reactions on surfaces."^^ . . . . . "https://en.wikipedia.org/wiki/Specific_surface_area"^^ . "$SSA = \\frac{SA}{\\m}$, where $SA$ is the surface area of an object and $\\m$ is the mass density of the object."^^ . "$SSA$"^^ . "Specific surface area (SSA) is a property of solids defined as the total surface area (SA) of a material per unit mass, (with units of m\u00B2/kg or m\u00B2/g). It is a physical value that can be used to determine the type and properties of a material (e.g. soil or snow). It has a particular importance for adsorption, heterogeneous catalysis, and reactions on surfaces." . . "Specific Surface Area"@en . . "Specific impulse (usually abbreviated Isp) is a way to describe the efficiency of rocket and jet engines. It represents the force with respect to the amount of propellant used per unit time.[1] If the \"amount\" of propellant is given in terms of mass (such as kilograms), then specific impulse has units of velocity. If it is given in terms of Earth-weight (such as kiloponds), then specific impulse has units of time. The conversion constant between the two versions of specific impulse is g. The higher the specific impulse, the lower the propellant flow rate required for a given thrust, and in the case of a rocket the less propellant is needed for a given delta-v per the Tsiolkovsky rocket equation."^^ . "http://dbpedia.org/resource/Specific_thrust"^^ . . "Q-160-100" . "http://en.wikipedia.org/wiki/Specific_thrust"^^ . "Specific impulse (usually abbreviated Isp) is a way to describe the efficiency of rocket and jet engines. It represents the force with respect to the amount of propellant used per unit time.[1] If the \"amount\" of propellant is given in terms of mass (such as kilograms), then specific impulse has units of velocity. If it is given in terms of Earth-weight (such as kiloponds), then specific impulse has units of time. The conversion constant between the two versions of specific impulse is g. The higher the specific impulse, the lower the propellant flow rate required for a given thrust, and in the case of a rocket the less propellant is needed for a given delta-v per the Tsiolkovsky rocket equation." . . "Specific thrust"@en . . . "\"Specific Volume\" (\\(\\nu\\)) is the volume occupied by a unit of mass of a material. It is equal to the inverse of density."^^ . . . . . . . . . . . . . "0112/2///62720#UAD175" . "http://en.wikipedia.org/wiki/Specific_volume"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$sv = \\frac{1}{\\rho}$, where $\\rho$ is mass density."^^ . . . "Specific Volume"@en . . . . . . "https://en.wikipedia.org/wiki/Specific_weight"^^ . "The specific weight, also known as the unit weight is a volume-specific quantity defined as the weight per unit volume of a material. Note that weight is defined as a force, distinct from mass." . "\u03B3" . . "specific weight"@en . . "\"Spectral Angular Cross-section\" is the cross-section for ejecting or scattering a particle into an elementary cone with energy $E$ in an energy interval, divided by the solid angle $d\\Omega$ of that cone and the range $dE$ of that interval."^^ . . . . "http://en.wikipedia.org/wiki/Cross_section_(physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\sigma = \\int \\int \\sigma_{\\Omega,E} d\\Omega dE$"^^ . "$\\sigma_{\\Omega, E}$"^^ . . "Spectral Angular Cross-section"@en . . . . "energy distribution of the instantaneous value of radiant energy in relation to the volume of the propagation medium"@en . . "Energieverteilung des Augenblickswertes der Strahlungsenergie, bezogen auf das Volumen des Ausbreitungsmediums"@de . "0173-1#Z4-BAJ379#002" . . "spectral concentration of radiant energy density"@en-US . . "number of vibrational modes in an infinitesimal interval of angular frequency, divided by the size of that interval and by volume"@en . . "Anzahl von Vibrationsmodi in einem infinitesimalen Energie-Intervall der Kreisfrequenz, dividiert durch die Gr\u00F6\u00DFe dieses Energie-Intervalls und durch das zugeh\u00F6rige Volumen"@de . "0173-1#Z4-BAJ431#001" . . "spectral concentration of vibrational modes (in terms of angular frequency)"@en-US . . "\"Spectral Cross-section\" is the cross-section for a process in which the energy of the ejected or scattered particle is in an interval of energy, divided by the range $dE$ of this interval."^^ . . . . "http://en.wikipedia.org/wiki/Cross_section_(physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$\\sigma = \\int \\sigma_E dE$"^^ . "$\\sigma_E$"^^ . . "Spectral Cross-section"@en . . . . . "0112/2///62720#UAD178" . . "spectral density of vibrational modes" . . "The Spectral Luminous Efficiency is a measure of how well a light source produces visible light. It is the ratio of luminous flux to power. A common choice is to choose units such that the maximum possible efficacy, 683 lm/W, corresponds to an efficiency of 100%."^^ . . "http://en.wikipedia.org/wiki/Luminous_efficacy"^^ . "$V(\\lambda) = \\frac{\\Phi_\\lambda(\\lambda_m)}{\\Phi_\\lambda(\\lambda)}$, where $\\Phi_\\lambda(\\lambda_m)$ is the spectral radiant flux at wavelength $\\lambda_m$ and $\\Phi_\\lambda(\\lambda)$ is the spectral radiant flux at wavelength $\\lambda$, such that both radiations produce equal luminous sensations under specified photometric conditions and $\\lambda_m$ is chosen so that the maximum value of this ratio is equal to 1."^^ . "The Spectral Luminous Efficiency is a measure of how well a light source produces visible light. It is the ratio of luminous flux to power. A common choice is to choose units such that the maximum possible efficacy, 683 lm/W, corresponds to an efficiency of 100%." . "V" . . "Spectral Luminous Efficiency"@en . . "\"Spectral Radiant Energy Density\" is the spectral concentration of radiant energy density (in terms of wavelength), or the spectral radiant energy density (in terms of wave length)."^^ . . . . . "$M-PER-L2-T2$"^^ . . "\"Spectral Radiant Energy Density\" is the spectral concentration of radiant energy density (in terms of wavelength), or the spectral radiant energy density (in terms of wave length)." . . "Spectral Radiant Energy Density"@en . . . "0112/2///62720#UAD179" . . "spectral radiant energy density in terms of wavelength" . . "Speed is the magnitude of velocity."^^ . . . . . . . . . . . . . "http://dbpedia.org/resource/Speed"^^ . . "Speed is the magnitude of velocity." . . "Speed"@en . . "The quantity kind \\text{Speed of Light} is the speed of electomagnetic waves in a given medium."^^ . . . . . . . . . . . . . "http://dbpedia.org/resource/Speed_of_light"^^ . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-34"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . . "Hitrost svetlobe"@sl . "I\u015F\u0131k h\u0131z\u0131"@tr . "Kelajuan cahaya"@ms . "Lichtgeschwindigkeit"@de . "Pr\u0119dko\u015B\u0107 \u015Bwiat\u0142a"@pl . "Rychlost sv\u011Btla"@cs . "Velocidade da luz"@pt . "Viteza luminii"@ro . "speed of light"@en . "velocidad de la luz"@es . "velocit\u00E0 della luce"@it . "vitesse de la lumi\u00E8re"@fr . "\u0421\u043A\u043E\u0440\u043E\u0441\u0442\u044C \u0441\u0432\u0435\u0442\u0430"@ru . "\u0633\u0631\u0639\u0629 \u0627\u0644\u0636\u0648\u0621"@ar . "\u0633\u0631\u0639\u062A \u0646\u0648\u0631"@fa . "\u092A\u094D\u0930\u0915\u093E\u0936 \u0915\u093E \u0935\u0947\u0917"@hi . "\u5149\u901F"@ja . "\u5149\u901F"@zh . . . . . . "The speed of sound is the distance travelled during a unit of time by a sound wave propagating through an elastic medium."^^ . . . . . . . . . . . . . "http://dbpedia.org/resource/Speed_of_sound"^^ . . "http://en.wikipedia.org/wiki/Speed_of_sound"^^ . "$c = \\sqrt{\\frac{K}{\\rho}}$, where $K$ is the coefficient of stiffness, the bulk modulus (or the modulus of bulk elasticity for gases), and $\\rho$ is the density. Also, $c^2 = \\frac{\\partial p}{\\partial \\rho}$, where $p$ is the pressure and $\\rho$ is the density."^^ . "The speed of sound is the distance travelled during a unit of time by a sound wave propagating through an elastic medium." . "c" . "belongs to SOQ-ISO" . . "Hitrost zvoka"@sl . "Kelajuan bunyi"@ms . "Schallgeschwindigkeit"@de . "Ses h\u0131z\u0131"@tr . "pr\u0119dko\u015B\u0107 d\u017Awi\u0119ku"@pl . "rychlost zvuku"@cs . "speed of sound"@en . "velocidad del sonido"@es . "velocidade do som"@pt . "velocit\u00E0 del suono"@it . "vitesse du son"@fr . "viteza sunetului"@ro . "\u0441\u043A\u043E\u0440\u043E\u0441\u0442\u044C \u0437\u0432\u0443\u043A\u0430"@ru . "\u0633\u0631\u0639\u0629 \u0627\u0644\u0635\u0648\u062A"@ar . "\u0633\u0631\u0639\u062A \u0635\u0648\u062A"@fa . "\u0927\u094D\u0935\u0928\u093F \u0915\u093E \u0935\u0947\u0917"@hi . "\u97F3\u901F"@ja . "\u97F3\u901F"@zh . "Schallausbreitungsgeschwindigkeit"@de . "c\u00E9l\u00E9rit\u00E9 du son"@fr . . . "Spherical illuminance is equal to quotient of the total luminous flux $\\Phi_v$ incident on a small sphere by the cross section area of that sphere."^^ . . . . . "http://eilv.cie.co.at/term/1245"^^ . "$E_v,0 = \\int_{4\\pi sr}{L_v}{d\\Omega}$, where $d\\Omega$ is the solid angle of each elementary beam passing through the given point and $L_v$ is its luminance at that point in the direction of the beam."^^ . . "Illuminance"@en . . . "In quantum mechanics and particle physics \"Spin\" is an intrinsic form of angular momentum carried by elementary particles, composite particles (hadrons), and atomic nuclei."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Spin_(physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "In quantum mechanics and particle physics \"Spin\" is an intrinsic form of angular momentum carried by elementary particles, composite particles (hadrons), and atomic nuclei." . "s" . . "Spin"@de . "Spin"@ms . "Spin"@ro . "Spin"@tr . "esp\u00EDn"@es . "spin"@cs . "spin"@en . "spin"@fr . "spin"@it . "spin"@pl . "spin"@pt . "spin"@sl . "\u0421\u043F\u0438\u043D"@ru . "\u0627\u0633\u067E\u06CC\u0646/\u0686\u0631\u062E\u0634"@fa . "\u0644\u0641 \u0645\u063A\u0632\u0644\u064A"@ar . "\u30B9\u30D4\u30F3\u89D2\u904B\u52D5\u91CF"@ja . "\u81EA\u65CB"@zh . . . "The \"Spin Quantum Number\" describes the spin (intrinsic angular momentum) of the electron within that orbital, and gives the projection of the spin angular momentum S along the specified axis"^^ . . . "0112/2///62720#UAD371" . "http://en.wikipedia.org/wiki/Quantum_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$s^2 = \\hbar^2 s(s + 1)$, where $s$ is the spin quantum number and $\\hbar$ is the Planck constant."^^ . "The \"Spin Quantum Number\" describes the spin (intrinsic angular momentum) of the electron within that orbital, and gives the projection of the spin angular momentum S along the specified axis" . "s" . . "Spin Quantum Number"@en . . . . . . . "true"^^ . . . "Square Energy"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "M_F" . . "Stage Propellant Mass"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "M_S" . . "Stage Structure Mass"@en . . . "The \"Standard Absolute Activity\" is proportional to the absoulte activity of the pure substance $B$ at the same temperature and pressure multiplied by the standard pressure."^^ . . . "http://en.wikipedia.org/wiki/Activity_coefficient"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\lambda_B^\\Theta = \\lambda_B^*(p^\\Theta)$, where $\\lambda_B^\\Theta$ the absolute activity of the pure substance $B$ at the same temperature and pressure, and $p^\\Theta$ is standard pressure."^^ . "$\\lambda_B^\\Theta$"^^ . . "Standard Absolute Activity"@en . . "\"Standard Chemical Potential\" is the value of the chemical potential at standard conditions"^^ . . . . "$j-mol^{-1}$"^^ . . "http://en.wikipedia.org/wiki/Chemical_potential"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\mu_B^\\Theta$"^^ . "\"Standard Chemical Potential\" is the value of the chemical potential at standard conditions" . . "Standard Chemical Potential"@en . . . "In celestial mechanics the standard gravitational parameter of a celestial body is the product of the gravitational constant G and the mass M of the body. Expressed as $\\mu = G \\cdot M$. The SI units of the standard gravitational parameter are $m^{3}s^{-2}$."^^ . . . "http://dbpedia.org/resource/Standard_gravitational_parameter"^^ . . "http://en.wikipedia.org/wiki/Standard_gravitational_parameter"^^ . "$\\mu$"^^ . . "Standard Gravitational Parameter"@en . . "function of energy in a solid, determined by the number of permissible quantum states in the energy range between E and E+dE per volume of material of this solid"@en . . "Funktion der Energie in einem Festk\u00F6rper, bestimmt durch die Anzahl von erlaubten Quantenzust\u00E4nden im Energiebereich zwischen E und E+dE je Volumen des Materials dieses Festk\u00F6rpers"@de . "0173-1#Z4-BAJ427#001" . . "state density"@en-US . . "ratio between number of vibration modes in an infinitesimal interval of the angular frequency and the length of this interval and the volume"@en . . "0112/2///62720#UAD180" . "Quotient aus Anzahl von Vibrationsmodi in einem infinitesimalen Intervall der Kreisfrequenz durch die Spannweite dieses Intervalls und das Volumen"@de . "0173-1#Z4-BAJ454#001" . . "state density as expression of angular frequency"@en-US . "state density as expression of angular frequency)" . . "Static friction is friction between two or more solid objects that are not moving relative to each other. For example, static friction can prevent an object from sliding down a sloped surface. "^^ . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Friction"^^ . . "http://en.wikipedia.org/wiki/Friction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "Static friction is friction between two or more solid objects that are not moving relative to each other. For example, static friction can prevent an object from sliding down a sloped surface. " . . "Static Friction"@en . . . "Static friction is friction between two or more solid objects that are not moving relative to each other. For example, static friction can prevent an object from sliding down a sloped surface. "^^ . . . "http://dbpedia.org/resource/Friction"^^ . . "http://en.wikipedia.org/wiki/Friction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\mu = \\frac{F_max}{N}$, where $F_max$ is the maximum tangential component of the contact force and $N$ is the normal component of the contact force between two bodies at relative rest."^^ . "$\\mu$"^^ . "Static friction is friction between two or more solid objects that are not moving relative to each other. For example, static friction can prevent an object from sliding down a sloped surface. " . . . . "Static Friction Coefficient"@en . . . "\"Static Pressure\" is the pressure at a nominated point in a fluid. Every point in a steadily flowing fluid, regardless of the fluid speed at that point, has its own static pressure $P$, dynamic pressure $q$, and total pressure $P_0$. The total pressure is the sum of the dynamic and static pressures, that is $P_0 = P + q$."^^ . "p" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Static_pressure"^^ . "p" . "belongs to SOQ-ISO" . . "Static pressure"@en . . . "A \"Statistical Weight\" is the relative probability (possibly unnormalized) of a particular feature of a state."^^ . . . "http://en.wikipedia.org/wiki/Statistical_weight"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "A \"Statistical Weight\" is the relative probability (possibly unnormalized) of a particular feature of a state." . "g" . . "Statistical Weight"@en . . "In probability theory, a stochastic process, or sometimes random process is a collection of random variables; this is often used to represent the evolution of some random value, or system, over time. This is the probabilistic counterpart to a deterministic process (or deterministic system)."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Stochastic_process"^^ . . "http://en.wikipedia.org/wiki/Stochastic_process"^^ . "In probability theory, a stochastic process, or sometimes random process is a collection of random variables; this is often used to represent the evolution of some random value, or system, over time. This is the probabilistic counterpart to a deterministic process (or deterministic system)." . "X" . . "Stochastic Process"@en . . . "Chemical reactions, as macroscopic unit operations, consist of simply a very large number of elementary reactions, where a single molecule reacts with another molecule. As the reacting molecules (or moieties) consist of a definite set of atoms in an integer ratio, the ratio between reactants in a complete reaction is also in integer ratio. A reaction may consume more than one molecule, and the \"Stoichiometric Number\" counts this number, defined as positive for products (added) and negative for reactants (removed)."^^ . . . "http://en.wikipedia.org/wiki/Stoichiometry"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\nu_B$"^^ . "Chemical reactions, as macroscopic unit operations, consist of simply a very large number of elementary reactions, where a single molecule reacts with another molecule. As the reacting molecules (or moieties) consist of a definite set of atoms in an integer ratio, the ratio between reactants in a complete reaction is also in integer ratio. A reaction may consume more than one molecule, and the \"Stoichiometric Number\" counts this number, defined as positive for products (added) and negative for reactants (removed)." . . "Stoichiometric Number"@en . . . "In any branch of science dealing with materials and their behaviour, strain is the geometrical expression of deformation caused by the action of stress on a physical body. Strain is calculated by first assuming a change between two body states: the beginning state and the final state. Then the difference in placement of two points in this body in those two states expresses the numerical value of strain. Strain therefore expresses itself as a change in size and/or shape. [Wikipedia]"^^ . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Strain"^^ . . . "http://www.freestudy.co.uk/mech%20prin%20h2/stress.pdf"^^ . "$\\epsilon$"^^ . "In any branch of science dealing with materials and their behaviour, strain is the geometrical expression of deformation caused by the action of stress on a physical body. Strain is calculated by first assuming a change between two body states: the beginning state and the final state. Then the difference in placement of two points in this body in those two states expresses the numerical value of strain. Strain therefore expresses itself as a change in size and/or shape. [Wikipedia]" . . "Strain"@en . . . "Defined as the 'work done' for a given strain, that is the area under the stress-strain curve after a specified eation. Source(s): http://www.prepol.com/product-range/product-subpages/terminology"^^ . . . . . . . . "Defined as the 'work done' for a given strain, that is the area under the stress-strain curve after a specified eation. Source(s): http://www.prepol.com/product-range/product-subpages/terminology" . "u" . . "Strain Energy Density"@en . . . "Stress is a measure of the average amount of force exerted per unit area of a surface within a deformable body on which internal forces act. In other words, it is a measure of the intensity or internal distribution of the total internal forces acting within a deformable body across imaginary surfaces. These internal forces are produced between the particles in the body as a reaction to external forces applied on the body. Stress is defined as ${\\rm{Stress}} = \\frac{F}{A}$."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.freestudy.co.uk/mech%20prin%20h2/stress.pdf"^^ . "${\\rm{Stress}} = \\frac{F}{A}$"^^ . "$\\sigma$"^^ . . "Stress"@en . . . "In fracture mechanics, the stress intensity factor (K) is used to predict the stress state (\"stress intensity\") near the tip of a crack or notch caused by a remote load or residual stresses. It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle materials, and is a critical technique in the discipline of damage tolerance. The concept can also be applied to materials that exhibit small-scale yielding at a crack tip."^^ . . . . "https://en.wikipedia.org/wiki/Stress_intensity_factor"^^ . "$\\K$"^^ . "In fracture mechanics, the stress intensity factor (K) is used to predict the stress state (\"stress intensity\") near the tip of a crack or notch caused by a remote load or residual stresses. It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle materials, and is a critical technique in the discipline of damage tolerance. The concept can also be applied to materials that exhibit small-scale yielding at a crack tip." . "K" . . "Stress Intensity Factor"@en . . "When a ray of light passes through a photoelastic material, its electromagnetic wave components are resolved along the two principal stress directions and each component experiences a different refractive index due to the birefringence. The difference in the refractive indices leads to a relative phase retardation between the two components. Assuming a thin specimen made of isotropic materials, where two-dimensional photoelasticity is applicable, the magnitude of the relative retardation is given by the stress-optic law \u0394=((2\u03C0t)/\u03BB)C(\u03C3\u2081-\u03C3\u2082), where \u0394 is the induced retardation, C is the stress-optic coefficient, t is the specimen thickness, \u03BB is the vacuum wavelength, and \u03C3\u2081 and \u03C3\u2082 are the first and second principal stresses, respectively."^^ . . . . . . . . . "https://en.wikipedia.org/w/index.php?title=Photoelasticity&oldid=1109858854#Experimental_principles"^^ . "When a ray of light passes through a photoelastic material, its electromagnetic wave components are resolved along the two principal stress directions and each component experiences a different refractive index due to the birefringence. The difference in the refractive indices leads to a relative phase retardation between the two components. Assuming a thin specimen made of isotropic materials, where two-dimensional photoelasticity is applicable, the magnitude of the relative retardation is given by the stress-optic law $\\Delta ={\\frac {2\\pi t}{\\lambda }}C(\\sigma _{1}-\\sigma _{2})$, where $\\Delta$ is the induced retardation, $C$ is the stress-optic coefficient, $t$ is the specimen thickness, $\\lambda$ is the vacuum wavelength, and $\\sigma_1$ and $\\sigma_2$ are the first and second principal stresses, respectively."^^ . "When a ray of light passes through a photoelastic material, its electromagnetic wave components are resolved along the two principal stress directions and each component experiences a different refractive index due to the birefringence. The difference in the refractive indices leads to a relative phase retardation between the two components. Assuming a thin specimen made of isotropic materials, where two-dimensional photoelasticity is applicable, the magnitude of the relative retardation is given by the stress-optic law \u0394=((2\u03C0t)/\u03BB)C(\u03C3\u2081-\u03C3\u2082), where \u0394 is the induced retardation, C is the stress-optic coefficient, t is the specimen thickness, \u03BB is the vacuum wavelength, and \u03C3\u2081 and \u03C3\u2082 are the first and second principal stresses, respectively." . . . . "Stress-Optic Coefficient"@en . . "Structural efficiency is a function of the weight of structure to the afforded vehicle's strength."^^ . . . . . . . . . . . . . "$\\gamma$"^^ . "Structural efficiency is a function of the weight of structure to the afforded vehicle's strength." . . "Structural Efficiency"@en . . . "\"Structure Factor\" is a mathematical description of how a material scatters incident radiation."^^ . . . "http://en.wikipedia.org/wiki/Structure_factor"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$F(h, k, l) = \\sum_{n=1}^N f_n\\exp{[2\\pi i(hx_n + ky_n +lz_n)]}$, where $f_n$ is the atomic scattering factor for atom $n$, and $x_n$, $y_n$, and $z_n$ are fractional coordinates in the unit cell; for $h$, $k$, and $l$."^^ . "\"Structure Factor\" is a mathematical description of how a material scatters incident radiation." . "F(h, k, l)" . . "Structure Factor"@en . . . . "0112/2///62720#UAD366" . . "sun protection factor of a product" . . "\"Superconduction Transition Temperature\" is the critical thermodynamic temperature of a superconductor."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Superconductivity"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Superconduction Transition Temperature\" is the critical thermodynamic temperature of a superconductor." . "T_c" . . "Superconduction Transition Temperature"@en . . . . . "\"Superconductor Energy Gap\" is the width of the forbidden energy band in a superconductor."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/BCS_theory"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Superconductor Energy Gap\" is the width of the forbidden energy band in a superconductor." . "\u0394" . . "Superconductor Energy Gap"@en . . . "The \"Surface Activity Density\" is undefined."^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$a_s = \\frac{A}{S}$, where $S$ is the total area of the surface of a sample and $A$ is its activity."^^ . "The \"Surface Activity Density\" is undefined." . "a_s" . . "Surface Activity Density"@en . . . . "$surface-heat-xfer-coeff$"^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$q = h (T_s - T_r)$, where $T_s$ is areic heat flow rate is the thermodynamic temperature of the surface, and is a reference thermodynamic temperature characteristic of the adjacent surroundings."^^ . "$\\alpha$"^^ . . "Surface Coefficient of Heat Transfer"@en . . "The area density (also known as areal density, surface density, or superficial density) of a two-dimensional object is calculated as the mass per unit area."^^ . . . . . . . . . "http://en.wikipedia.org/wiki/Area_density"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\rho_A = \\frac{dm}{dA}$, where $m$ is mass and $A$ is area."^^ . "$\\rho_A$"^^ . "The area density (also known as areal density, surface density, or superficial density) of a two-dimensional object is calculated as the mass per unit area." . . . "Surface Density"@en . . "quotient of the volume of a material, which passes through a specified surface, and the therefor required time divided by this specified area"@en . . "Quotient aus dem Volumen eines Stoffes, das durch eine vorgegebene Oberfl\u00E4che hindurchgeht, und der dazu ben\u00F6tigten Zeit dividiert durch diese vorgegebene Fl\u00E4che"@de . "0173-1#Z4-BAJ421#003" . . "surface-related volume flow"@en-US . . "\"Surface Tension\" is a contractive tendency of the surface of a liquid that allows it to resist an external force."^^ . . . "0112/2///62720#UAD184" . "http://en.wikipedia.org/wiki/Surface_tension"^^ . "$\\gamma = \\frac{dF}{dl}$, where $F$ is the force component perpendicular to a line element in a surface and $l$ is the length of the line element."^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "\"Surface Tension\" is a contractive tendency of the surface of a liquid that allows it to resist an external force." . . "\u03B3" . . "Oberfl\u00E4chenspannung"@de . "Tegangan permukaan"@ms . "Tensiune superficial\u0103"@ro . "Y\u00FCzey gerilimi"@tr . "napi\u0119cie powierzchniowe"@pl . "povrchov\u00E9 nap\u011Bt\u00ED"@cs . "povr\u0161inska napetost"@sl . "surface tension"@en . "tension superficielle"@fr . "tensione superficiale"@it . "tensi\u00F3n superficial"@es . "tens\u00E3o superficial"@pt . "\u043F\u043E\u0432\u0435\u0440\u0445\u043D\u043E\u0441\u0442\u043D\u043E\u0435 \u043D\u0430\u0442\u044F\u0436\u0435\u043D\u0438\u0435"@ru . "\u062A\u0648\u062A\u0631 \u0633\u0637\u062D\u064A"@ar . "\u06A9\u0634\u0634 \u0633\u0637\u062D\u06CC"@fa . "\u092A\u0943\u0937\u094D\u0920 \u0924\u0928\u093E\u0935"@hi . "\u8868\u9762\u5F20\u529B"@zh . "\u8868\u9762\u5F35\u529B"@ja . "tension de surface"@fr . . . "in a mechanical system the area-related quotient of a force affecting to a point divided by the resulting component of the particle velocity in direction of the force"@en . . "0112/2///62720#UAD185" . "in einem mechanischen System der fl\u00E4chenbezogene Quotient einer an einem Punkt angreifenden Kraft durch die resultierende Komponente der Teilchengeschwindigkeit in Richtung der Kraft"@de . "0173-1#Z4-BAJ323#002" . . "surge impedance of the medium" . "surge impedance of the medium"@en-US . . "\"Susceptance\" is the imaginary part of admittance. The inverse of admittance is impedance and the real part of admittance is conductance. "^^ . "http://dbpedia.org/resource/Susceptance"^^ . . "http://en.wikipedia.org/wiki/Susceptance?oldid=430151986"^^ . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-54"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$B = \\lim{\\underline{Y}}$, where $\\underline{Y}$ is admittance."^^ . "\"Susceptance\" is the imaginary part of admittance. The inverse of admittance is impedance and the real part of admittance is conductance. " . "B" . . "Susceptance"@en . . . . "rate, at which a symbol, consisting of one or more bits, is transmitted per second"@en . . "Geschwindigkeit, mit der ein aus mehreren Bit bestehendes Symbol je Sekunde \u00FCbertragen wird"@de . "0173-1#Z4-BAJ386#002" . . "symbol transmission rate"@en-US . . "The pressure of blood in the arteries which rises to a maximum as blood is pumped out by the left ventricle (systole) and drops to a minimum in diastole. The systolic/diastolic pressure is normally ~120/80 mmHg in a young adult."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.oxfordreference.com/view/10.1093/acref/9780199549351.001.0001/acref-9780199549351-e-1162"^^ . "The pressure of blood in the arteries which rises to a maximum as blood is pumped out by the left ventricle (systole) and drops to a minimum in diastole. The systolic/diastolic pressure is normally ~120/80 mmHg in a young adult." . . "Systolic Blood Pressure"@en . . . . "An informal mass limit established by a Project Office (at the Element Integrated Product Team (IPT) level or below) to control mass."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "An informal mass limit established by a Project Office (at the Element Integrated Product Team (IPT) level or below) to control mass." . . "Target Bogie Mass"@en . . . "Temperature is a physical property of matter that quantitatively expresses the common notions of hot and cold. Objects of low temperature are cold, while various degrees of higher temperatures are referred to as warm or hot. Heat spontaneously flows from bodies of a higher temperature to bodies of lower temperature, at a rate that increases with the temperature difference and the thermal conductivity."^^ . . . . . . . "http://dbpedia.org/resource/Temperature"^^ . . "0112/2///62720#UAD374" . "Temperature is a physical property of matter that quantitatively expresses the common notions of hot and cold. Objects of low temperature are cold, while various degrees of higher temperatures are referred to as warm or hot. Heat spontaneously flows from bodies of a higher temperature to bodies of lower temperature, at a rate that increases with the temperature difference and the thermal conductivity." . . "Temperature"@en . . . . . . . "Temperature Amount of Substance"@en . . "ratio of material concentration divided by the related temperature"@en . . "Quotient aus Stoffmengenkonzentration dividiert durch die zugeh\u00F6rige Temperatur"@de . "0173-1#Z4-BAJ395#002" . . "temperature-based amount-of-substance concentration"@en-US . . "ratio of density divided by the related temperature"@en . . "Quotient aus Dichte dividiert durch die zugeh\u00F6rige Temperatur"@de . "0173-1#Z4-BAJ389#003" . . "temperature-based density"@en-US . . "ratio of dynamic viscosity, divided by temperature"@en . . "Quotient der dynamischen Viskosit\u00E4t dividiert durch die Temperatur"@de . "0173-1#Z4-BAJ390#002" . . "temperature-based dynamic viscosity"@en-US . . "ratio of dynamic viscosity and the density of a material, divided by the related temperature"@en . . "Quotient aus der dynamischen Viskosit\u00E4t und der Dichte eines Stoffes dividiert durch die zugeh\u00F6rige Temperatur"@de . "0173-1#Z4-BAJ392#002" . . "temperature-based kinematic viscosity"@en-US . . "ratio of length divided by the related temperature"@en . . "Quotient aus L\u00E4nge dividiert durch die zugeh\u00F6rige Temperatur"@de . "0173-1#Z4-BAJ393#002" . . "temperature-based length"@en-US . . "ratio of mass divided by the related temperature"@en . . "Quotient aus Masse dividiert durch die zugeh\u00F6rige Temperatur"@de . "0173-1#Z4-BAJ394#002" . . "temperature-based mass"@en-US . . "ratio of mass flow divided by the related temperature"@en . . "Quotient aus Massenstrom dividiert durch die zugeh\u00F6rige Temperatur"@de . "0173-1#Z4-BAJ396#002" . . "temperature-based mass flow rate"@en-US . . . . "temperature-based quantity"@en-US . . "ratio of velocity divided by the related temperature"@en . . "Quotient aus Geschwindigkeit dividiert durch die zugeh\u00F6rige Temperatur"@de . "0173-1#Z4-BAJ391#001" . . "temperature-based velocity"@en-US . . "ratio of volume flow divided by the related temperature"@en . . "Quotient aus Volumenstrom dividiert durch die zugeh\u00F6rige Temperatur"@de . "0173-1#Z4-BAJ397#002" . . "temperature-based volume flow rate"@en-US . . . . . . . . . "https://www.merusonline.com/delta-t-temperature/"^^ . "Temperature difference (Delta T) is the difference of temperatures between two measuring points" . "\u0394T" . . "Temperaturdifferenz"@de . "temperature difference"@en . . . "The temperature gradient measures the difference of a temperature per length, as for instance used in an external wall or its layers. It is usually measured in K/m."^^ . . . . "https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/link/ifctemperaturegradientmeasure.htm"^^ . "The temperature gradient measures the difference of a temperature per length, as for instance used in an external wall or its layers. It is usually measured in K/m." . . "Temperature Gradient"@en . . . . . "Temperature per Magnetic Flux Density"@en . . . . . . . . . . . . . . . . . "Temperature per Time"@en . . . . . . "Temperature per Time Squared"@en . . "The \"Temperature Rate of Change\" measures the difference of a temperature per time (positive: rise, negative: fall), as for instance used with heat sensors. It is for example measured in K/s."^^ . . . . . . . . . . . . . . . "0112/2///62720#UAD186" . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC2/HTML/link/ifctemperaturerateofchangemeasure.htm"^^ . "The \"Temperature Rate of Change\" measures the difference of a temperature per time (positive: rise, negative: fall), as for instance used with heat sensors. It is for example measured in K/s." . . "Temperature Rate of Change"@en . . . . . . . . . . . "Temperature Ratio"@en . . . "molarity (mass of a substance in relation to the amount of this substance) divided by temperature"@en . . "Molarit\u00E4t (Masse einer Substanz bezogen auf die Stoffmenge dieser Substanz ) dividiert durch die Temperatur"@de . "0173-1#Z4-BAJ443#002" . . "temperature-related molar mass"@en-US . . "volume divided by temperature"@en . . "Volumen dividiert durch Temperatur"@de . "0173-1#Z4-BAJ398#002" . . "temperature-related volume "@en-US . . "\"Temporal Summation Function\" is the ability of the human eye to produce a composite signal from the signals coming into an eye during a short time interval."^^ . . . "http://en.wikipedia.org/wiki/Summation_(neurophysiology)#Temporal_summation"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Temporal Summation Function\" is the ability of the human eye to produce a composite signal from the signals coming into an eye during a short time interval." . . "Temporal Summation Function"@en . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Tension"^^ . . . "Tension"@en . . . "The heat transfer coefficient is also known as thermal admittance in the sense that the material may be seen as admitting heat to flow."^^ . . . . . . . . . . . . . . . "https://en.wikipedia.org/wiki/Thermal_conductivity"^^ . "The heat transfer coefficient is also known as thermal admittance in the sense that the material may be seen as admitting heat to flow." . . "Thermal Admittance"@en . . . "ratio between the supplied quantity of heat and the temperature range caused by the supplied quantity of heat"@en . . . . "0112/2///62720#UAD187" . "Quotient aus der zugef\u00FChrten W\u00E4rmemenge und der Temperatur\u00E4nderungen, die durch diese zugef\u00FChrte W\u00E4rmemenge verursacht wird"@de . "0173-1#Z4-BAJ406#002" . . "thermal capacitance" . "thermal capacitance"@en-US . . "median relative change in length over a specific length of the test piece, divided by the temperature range caused by it"@en . . "auf eine festgelegte L\u00E4nge des Probek\u00F6rpers bezogene mittlere relative L\u00E4ngen\u00E4nderung dividiert durch die sie verursachende Temperatur\u00E4nderung"@de . "0173-1#Z4-BAJ473#002" . . "thermal coefficient of linear expansion"@en-US . . "This quantity is also called \"Heat Transfer Coefficient\"."^^ . . . . . . . "0112/2///62720#UAD189" . "http://en.wikipedia.org/wiki/Thermal_insulation"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "$G = 1/R$, where $R$ is \"Thermal Resistance\""^^ . "This quantity is also called \"Heat Transfer Coefficient\"." . "G" . . "Thermal Conductance"@en . . . "In physics, thermal conductivity, \\(k\\) (also denoted as \\(\\lambda\\)), is the property of a material's ability to conduct heat. It appears primarily in Fourier's Law for heat conduction and is the areic heat flow rate divided by temperature gradient."^^ . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Thermal_conductivity"^^ . "$thermal-k$"^^ . . "http://en.wikipedia.org/wiki/Thermal_conductivity"^^ . "$\\lambda = \\frac{\\varphi}{T}$, where $\\varphi$ is areic heat flow rate and $T$ is temperature gradient."^^ . "$\\lambda$"^^ . . . "Thermal Conductivity"@en . . "Thermal diffusion is a phenomenon in which a temperature gradient in a mixture of fluids gives rise to a flow of one constituent relative to the mixture as a whole. in the context of the equation that describes thermal diffusion, the \"Thermal Diffusion Factor\" is ."^^ . . . "http://www.thermopedia.com/content/1189/"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\alpha_T = \\frac{k_T}{(x_A x_B)}$, where $k_T$ is the thermal diffusion ratio, and $x_A$ and $x_B$ are the local amount-of-substance fractions of the two substances $A$ and $B$."^^ . "$\\alpha_T$"^^ . "Thermal diffusion is a phenomenon in which a temperature gradient in a mixture of fluids gives rise to a flow of one constituent relative to the mixture as a whole. in the context of the equation that describes thermal diffusion, the \"Thermal Diffusion Factor\" is ." . . "Thermal Diffusion Factor"@en . . "The \"Thermal Diffusion Ratio\" is proportional to the product of the component concentrations."^^ . . . "http://www.thermopedia.com/content/1189/"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "In a steady state of a binary mixture in which thermal diffusion occurs, $grad x_B = -(\\frac{k_T}{T}) grad T$, where $x_B$ is the amount-of-substance fraction of the heavier substance $B$, and $T$ is the local thermodynamic temperature."^^ . "The \"Thermal Diffusion Ratio\" is proportional to the product of the component concentrations." . "k_T" . . "Thermal Diffusion Ratio"@en . . "The \"Thermal Diffusion Coefficient\" is ."^^ . . . "http://www.thermopedia.com/content/1189/"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$D_T = kT \\cdot D$, where $k_T$ is the thermal diffusion ratio, and $D$ is the diffusion coefficient."^^ . "The \"Thermal Diffusion Coefficient\" is ." . "D_T" . . "Thermal Diffusion Coefficient"@en . . "In heat transfer analysis, thermal diffusivity (usually denoted $\\alpha$ but $a$, $\\kappa$,$k$, and $D$ are also used) is the thermal conductivity divided by density and specific heat capacity at constant pressure. The formula is: $\\alpha = {k \\over {\\rho c_p}}$, where k is thermal conductivity ($W/(\\mu \\cdot K)$), $\\rho$ is density ($kg/m^{3}$), and $c_p$ is specific heat capacity ($\\frac{J}{(kg \\cdot K)}$) .The denominator $\\rho c_p$, can be considered the volumetric heat capacity ($\\frac{J}{(m^{3} \\cdot K)}$)."^^ . . . . . . . . "http://dbpedia.org/resource/Thermal_diffusivity"^^ . . "http://en.wikipedia.org/wiki/Thermal_diffusivity"^^ . "$a = \\frac{\\lambda}{\\rho c_\\rho}$, where $\\lambda$ is thermal conductivity, $\\rho$ is mass density and $c_\\rho$ is specific heat capacity at constant pressure."^^ . "$\\alpha$"^^ . "a" . . "Thermal Diffusivity"@en . . . "Thermal efficiency is a dimensionless performance measure of a thermal device such as an internal combustion engine, a boiler, or a furnace. The input to the device is heat, or the heat-content of a fuel that is consumed. The desired output is mechanical work, or heat, or possibly both."^^ . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Thermal_efficiency"^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "Thermal efficiency is a dimensionless performance measure of a thermal device such as an internal combustion engine, a boiler, or a furnace. The input to the device is heat, or the heat-content of a fuel that is consumed. The desired output is mechanical work, or heat, or possibly both." . . . . "Thermal Efficiency"@en . . . "\"Thermal Energy} is the portion of the thermodynamic or internal energy of a system that is responsible for the temperature of the system. From a macroscopic thermodynamic description, the thermal energy of a system is given by its constant volume specific heat capacity C(T), a temperature coefficient also called thermal capacity, at any given absolute temperature (T): $U_{thermal} = C(T) \\cdot T$."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Thermal_energy"^^ . . "0112/2///62720#UAD191" . "http://en.wikipedia.org/wiki/Thermal_energy"^^ . . "Thermal Energy"@en . . . . . . . "Thermal Energy Length"@en . . "The \"Thermal Expansion Coefficient\" is a measure of the thermal expansion coefficient of a material, which expresses its elongation (as a ratio) per temperature difference. It is usually measured in 1/K. A positive elongation per (positive) rise of temperature is expressed by a positive value."^^ . . . . . . . . . . . "0112/2///62720#UAD188" . "https://standards.buildingsmart.org/IFC/DEV/IFC4_3/RC2/HTML/link/ifcthermalexpansioncoefficientmeasure.htm"^^ . "The \"Thermal Expansion Coefficient\" is a measure of the thermal expansion coefficient of a material, which expresses its elongation (as a ratio) per temperature difference. It is usually measured in 1/K. A positive elongation per (positive) rise of temperature is expressed by a positive value." . . "Thermal Expansion Coefficient"@en . . . "$\\textit{Thermal Insulance}$ is the reduction of heat transfer (the transfer of thermal energy between objects of differing temperature) between objects in thermal contact or in range of radiative influence. In building technology, this quantity is often called $\\textit{Thermal Resistance}$, with the symbol $R$."^^ . . . . . . . . "0112/2///62720#UAD192" . "http://en.wikipedia.org/wiki/Thermal_insulation"^^ . "$M = 1/K$, where $K$ is \"Coefficient of Heat Transfer\""^^ . "M" . . "Thermal Insulance"@en . . . "temperature difference between two surfaces divided by areic heat flow rate in the direction of the temperature gradient"@en . . "Temperaturdifferenz zwischen zwei Oberfl\u00E4chen dividiert durch den fl\u00E4chenbezogenen W\u00E4rmestrom in der Richtung des Temperaturgradienten"@de . "0173-1#Z4-BAJ404#002" . . "thermal insulation"@en-US . . "$\\textit{Thermal Resistance}$ is a heat property and a measure of a temperature difference by which an object or material resists a heat flow (heat per time unit or thermal resistance). Thermal resistance is the reciprocal thermal conductance. the thermodynamic temperature difference divided by heat flow rate. Thermal resistance $R$ has the units $\\frac{m^2 \\cdot K}{W}$."^^ . . . . . . "http://dbpedia.org/resource/Thermal_resistance"^^ . . "0112/2///62720#UAD193" . "http://en.wikipedia.org/wiki/Thermal_resistance"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "R" . . "op\u00F3r cieplny"@cs . "resistencia t\u00E9rmica"@es . "resistenza termica"@it . "resist\u00EAncia t\u00E9rmica"@pt . "r\u00E9sistance thermique"@fr . "thermal resistance"@en . "thermischer Widerstand"@de . "\u0645\u0642\u0627\u0648\u0645\u0629 \u062D\u0631\u0627\u0631\u064A\u0629"@ar . "\u70ED\u963B"@zh . "\u71B1\u62B5\u6297"@ja . . . . "W\u00E4rmewiderstand"@de . . "The reciprocal of thermal conductivity is thermal resistivity, measured in $kelvin-metres$ per watt ($K \\cdot m/W$)."^^ . . . . . . "0112/2///62720#UAD194" . . "Thermal Resistivity"@en . . "Thermal transmittance is the rate of transfer of heat through matter. The thermal transmittance of a material (such as insulation or concrete) or an assembly (such as a wall or window) is expressed as a U-value. The concept of thermal transmittance is closely related to that of thermal resistance. The thermal resistance of a structure is the reciprocal of its thermal transmittance."^^ . . . . . . . . . . . . . . . "0112/2///62720#UAD195" . "https://en.wikipedia.org/wiki/Thermal_transmittance"^^ . "Thermal transmittance is the rate of transfer of heat through matter. The thermal transmittance of a material (such as insulation or concrete) or an assembly (such as a wall or window) is expressed as a U-value. The concept of thermal transmittance is closely related to that of thermal resistance. The thermal resistance of a structure is the reciprocal of its thermal transmittance." . . "Thermal Transmittance"@en . . . "The \"Thermal Utilization Factor\" in an infinite medium, is the ratio of the number of thermal absorbed in a fissionable nuclide or in a nuclear fuel, as specified, to the total number of thermal neutrons absorbed."^^ . . . "http://en.wikipedia.org/wiki/Four_factor_formula"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "The \"Thermal Utilization Factor\" in an infinite medium, is the ratio of the number of thermal absorbed in a fissionable nuclide or in a nuclear fuel, as specified, to the total number of thermal neutrons absorbed." . "f" . . "Thermal Utilization Factor"@en . . "Probability that a neutron that gets absorbed does so in the fuel material."^^ . . . . . . . . . . . . . "Probability that a neutron that gets absorbed does so in the fuel material." . "f" . . "Thermal Utilization Factor For Fission"@en . . . "\"Thermodynamic Critical Magnetic Flux Density\" is the maximum magnetic field strength below which a material remains superconducting."^^ . . . . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$G_n - G_s = \\frac{1}{2}\\frac{B_c^2 \\cdot V}{\\mu_0}$, where $G_n$ and $G_s$ are the Gibbs energies at zero magnetic flux density in a normal conductor and superconductor, respectively, $\\mu_0$ is the magnetic constant, and $V$ is volume."^^ . "\"Thermodynamic Critical Magnetic Flux Density\" is the maximum magnetic field strength below which a material remains superconducting." . "B_c" . . "Thermodynamic Critical Magnetic Flux Density"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . "For a closed thermodynamic system, $\\Delta U = Q + W$, where $Q$ is amount of heat transferred to the system and $W$ is work done on the system provided that no chemical reactions occur."^^ . "U" . . "Thermodynamic Energy"@en . . . "Thermodynamic Entropy is a measure of the unavailability of a system\u2019s energy to do work. It is a measure of the randomness of molecules in a system and is central to the second law of thermodynamics and the fundamental thermodynamic relation, which deal with physical processes and whether they occur spontaneously. The dimensions of entropy are energy divided by temperature, which is the same as the dimensions of Boltzmann's constant ($kB$) and heat capacity. The SI unit of entropy is $joule\\ per\\ kelvin$. [Wikipedia]"^^ . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . . "Thermodynamic Entropy"@en . . . "Thermodynamic temperature is the absolute measure of temperature and is one of the principal parameters of thermodynamics.\nTemperature is a physical property of matter that quantitatively expresses the common notions of hot and cold.\nIn thermodynamics, in a system of which the entropy is considered as an independent externally controlled variable, absolute, or thermodynamic temperature is defined as the derivative of the internal energy with respect to the entropy. This is a base quantity in the International System of Quantities, ISQ, on which the International System of Units, SI, is based." . . . . "http://dbpedia.org/page/Thermodynamic_temperature"^^ . . "0112/2///62720#UAD196" . "$\\Theta$"^^ . "Thermodynamic temperature is the absolute measure of temperature and is one of the principal parameters of thermodynamics.\nTemperature is a physical property of matter that quantitatively expresses the common notions of hot and cold.\nIn thermodynamics, in a system of which the entropy is considered as an independent externally controlled variable, absolute, or thermodynamic temperature is defined as the derivative of the internal energy with respect to the entropy. This is a base quantity in the International System of Quantities, ISQ, on which the International System of Units, SI, is based." . . "T" . . "Suhu termodinamik"@ms . "Termodynamick\u00E1 teplota"@cs . "abszol\u00FAt h\u0151m\u00E9rs\u00E9klet"@hu . "temperatura termodinamica"@it . "temperatura thermodynamica absoluta"@la . "temperatura"@es . "temperatura"@pl . "temperatura"@pt . "temperatura"@sl . "temperatur\u0103 termodinamic\u0103"@ro . "temp\u00E9rature thermodynamique"@fr . "termodinamik s\u0131cakl\u0131k"@tr . "thermodynamic temperature"@en . "thermodynamische Temperatur"@de . "\u0391\u03C0\u03CC\u03BB\u03C5\u03C4\u03B7"@el . "\u0422\u0435\u0440\u043C\u043E\u0434\u0438\u043D\u0430\u043C\u0438\u0447\u0435\u0441\u043A\u0430\u044F \u0442\u0435\u043C\u043F\u0435\u0440\u0430\u0442\u0443\u0440\u0430"@ru . "\u0422\u0435\u0440\u043C\u043E\u0434\u0438\u043D\u0430\u043C\u0438\u0447\u043D\u0430 \u0442\u0435\u043C\u043F\u0435\u0440\u0430\u0442\u0443\u0440\u0430"@bg . "\u05D8\u05DE\u05E4\u05E8\u05D8\u05D5\u05E8\u05D4 \u05DE\u05D5\u05D7\u05DC\u05D8\u05EA"@he . "\u062F\u0631\u062C\u0629 \u0627\u0644\u062D\u0631\u0627\u0631\u0629 \u0627\u0644\u0645\u0637\u0644\u0642\u0629"@ar . "\u062F\u0645\u0627\u06CC \u062A\u0631\u0645\u0648\u062F\u06CC\u0646\u0627\u0645\u06CC\u06A9\u06CC"@fa . "\u090A\u0937\u094D\u092E\u0917\u0924\u093F\u0915\u0940\u092F \u0924\u093E\u092A\u092E\u093E\u0928"@hi . "\u70ED\u529B\u5B66\u6E29\u5EA6"@zh . "\u71B1\u529B\u5B66\u6E29\u5EA6"@ja . . "temperatura assoluta"@it . "\u0398\u03B5\u03C1\u03BC\u03BF\u03B4\u03C5\u03BD\u03B1\u03BC\u03B9\u03BA\u03AE \u0398\u03B5\u03C1\u03BC\u03BF\u03BA\u03C1\u03B1\u03C3\u03AF\u03B1"@el . . . "\"Thickness\" is the the smallest of three dimensions: length, width, thickness."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Thickness"^^ . . "http://www.merriam-webster.com/dictionary/thickness"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "\"Thickness\" is the the smallest of three dimensions: length, width, thickness." . "d" . . "Thickness"@en . . . "\"Thomson Coefficient\" represents Thomson heat power developed, divided by the electric current and the temperature difference."^^ . . . "http://www.daviddarling.info/encyclopedia/T/Thomson_effect.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$\\mu$"^^ . "\"Thomson Coefficient\" represents Thomson heat power developed, divided by the electric current and the temperature difference." . . "Thomson Coefficient"@en . . "Thrust is a reaction force described quantitatively by Newton's Second and Third Laws. When a system expels or accelerates mass in one direction the accelerated mass will cause a proportional but opposite force on that system.\nThe pushing or pulling force developed by an aircraft engine or a rocket engine.\nThe force exerted in any direction by a fluid jet or by a powered screw, as, the thrust of an antitorque rotor.\nSpecifically, in rocketry, $ F\\,= m\\cdot v$ where m is propellant mass flow and v is exhaust velocity relative to the vehicle. Also called momentum thrust."^^ . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Thrust"^^ . . "Thrust is a reaction force described quantitatively by Newton's Second and Third Laws. When a system expels or accelerates mass in one direction the accelerated mass will cause a proportional but opposite force on that system." . . "Thrust"@en . . . "The thrust force of a jet-propulsion engine per unit of frontal area per unit of incompressible dynamic pressure "^^ . . "The thrust force of a jet-propulsion engine per unit of frontal area per unit of incompressible dynamic pressure " . "C_{F}" . . "Thrust Coefficient"@en . . . . . . . . "Thrust To Mass Ratio"@en . . . "Thrust-to-weight ratio is a ratio of thrust to weight of a rocket, jet engine, propeller engine, or a vehicle propelled by such an engine. It is a dimensionless quantity and is an indicator of the performance of the engine or vehicle."^^ . . . . . . . . . . . . . . . . "$\\psi$"^^ . "Thrust-to-weight ratio is a ratio of thrust to weight of a rocket, jet engine, propeller engine, or a vehicle propelled by such an engine. It is a dimensionless quantity and is an indicator of the performance of the engine or vehicle." . . "Thrust To Weight Ratio"@en . . . . . . . "$\\eta$"^^ . . "Thruster Power To Thrust Efficiency"@en . . "Time is a basic component of the measuring system used to sequence events, to compare the durations of events and the intervals between them, and to quantify the motions of objects."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Time"^^ . . "0112/2///62720#UAD197" . "Time is a basic component of the measuring system used to sequence events, to compare the durations of events and the intervals between them, and to quantify the motions of objects." . . "t" . . "Masa"@ms . "Zeit"@de . "czas"@pl . "id\u0151"@hu . "tempo"@it . "tempo"@pt . "temps"@fr . "tempus"@la . "tiempo"@es . "time"@en . "timp"@ro . "zaman"@tr . "\u010Cas"@cs . "\u010Das"@sl . "\u03A7\u03C1\u03CC\u03BD\u03BF\u03C2"@el . "\u0412\u0440\u0435\u043C\u0435"@bg . "\u0412\u0440\u0435\u043C\u044F"@ru . "\u05D6\u05DE\u05DF"@he . "\u0632\u0645\u0627\u0646"@fa . "\u0632\u0645\u0646"@ar . "\u0938\u092E\u092F"@hi . "\u65F6\u95F4"@zh . "\u6642\u9593"@ja . . "Sound intensity or acoustic intensity ($I$) is defined as the sound power $P_a$ per unit area $A$. The usual context is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity."^^ . "w/m2" . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Sound_intensity"^^ . "$I = \\frac{1}{t2 - t1} \\int_{t1}^{t2}i(t)dt$, where $t1$ and $t2$ are the starting and ending times for the integral and $i$ is sound intensity."^^ . "Sound intensity or acoustic intensity ($I$) is defined as the sound power $P_a$ per unit area $A$. The usual context is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity." . "I" . "belongs to SOQ-ISO" . . "Time averaged sound intensity"@en . . . . "0112/2///62720#UAD198" . . "time constant (inductance based)" . . . . "true"^^ . . . . . "Time Percentage"@en . . . . . . . . . . . . . . . . . . . . . "Time Ratio"@en . . . "logarithm of the ratio of the value of a defined variable to the value of a reference variable of the same type, divided by the related time"@en . . "Logarithmus des Verh\u00E4ltnisses des Werts einer gegebenen Gr\u00F6\u00DFe zum Wert einer Bezugsgr\u00F6\u00DFe gleicher Art dividiert durch die zugeh\u00F6rige Zeit"@de . "0173-1#Z4-BAJ415#002" . . "time-related logarithmic ratio"@en-US . . . "http://dbpedia.org/resource/Time_Squared"^^ . "true"^^ . . . "Time Squared"@en . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31890"^^ . . "Time Temperature"@en . . . . . "http://dbpedia.org/resource/Time_Squared"^^ . . . "Time Squared"@en . . "In physics, a torque ($\\tau$) is a vector that measures the tendency of a force to rotate an object about some axis. The magnitude of a torque is defined as force times its lever arm. Just as a force is a push or a pull, a torque can be thought of as a twist. The SI unit for torque is newton meters ($N m$). In U.S. customary units, it is measured in foot pounds (ft lbf) (also known as \"pounds feet\").\nMathematically, the torque on a particle (which has the position r in some reference frame) can be defined as the cross product: $\u03C4 = r x F$\nwhere,\nr is the particle's position vector relative to the fulcrum\nF is the force acting on the particles,\nor, more generally, torque can be defined as the rate of change of angular momentum: $\u03C4 = dL/dt$\nwhere,\nL is the angular momentum vector\nt stands for time."^^ . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Torque"^^ . . . "0112/2///62720#UAD200" . "http://en.wikipedia.org/wiki/Torque"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\tau = M \\cdot e_Q$, where $M$ is the momentof force and $e_Q$ is a unit vector directed along a $Q-axis$ with respect to which the torque is considered."^^ . "$\\tau$"^^ . . "Torsionmoment"@de . "coppia"@it . "couple"@fr . "moment obrotowy"@pl . "momento de tor\u00E7\u00E3o"@pt . "par"@es . "torque"@en . "\u0639\u0632\u0645 \u0645\u062D\u0648\u0631\u0649"@ar . "\u30C8\u30EB\u30AF"@ja . "\u8F6C\u77E9"@zh . "Drillmoment"@de . "bin\u00E2rio"@pt . "moment de torsion"@fr . "momento de torsi\u00F3n"@es . "momento torcente"@it . . "product of magnetic induction, number of turns per unit length, and the area enclosed by the coil corresponding to the gradient of the curve representing the ratio between the torque of the motor and the current"@en . . "0112/2///62720#UAD201" . "Produkt aus der magnetischen Induktion, der Windungszahl und der von der Spule eingeschlossenen Fl\u00E4che entsprechend der Steigung der Kurve des Verh\u00E4ltnisses Drehmoment des Motors zum Strom"@de . "0173-1#Z4-BAJ298#002" . . "torque constant" . "torque constant"@en-US . . . . . . . . "Torque per Angle"@en . . . . . . "Torque per Length"@en . . . "0112/2///62720#UAD202" . . "torsional rigidity" . . "ratio between the turning moment for elastic deformation of a torsion spring and the related angle of rotation"@en . . . . . . . "https://en.wikipedia.org/wiki/Torsion_spring"^^ . "A torsional spring constant is a measure of the stiffness of a torsional spring, which is a type of spring that experiences twisting or torque rather than compression or extension. It is typically measured in newton-meters per radian (N\u00B7m/rad) and is used to calculate the amount of torque required to twist a spring a certain amount. It is related to the spring's geometry, material properties, and manufacturing process." . "Quotient Drehmoment zur elastischen Verformung einer Drehfeder durch den zugeh\u00F6rigen Drehwinkel"@de . "0173-1#Z4-BAJ448#002" . . "Federkonstante Drehfeder"@de . "torsional spring constant"@en . . "\"Total Angular Momentum\" combines both the spin and orbital angular momentum of all particles and fields. In atomic and nuclear physics, orbital angular momentum is usually denoted by $l$ or $L$ instead of $\\Lambda$. The magnitude of $J$ is quantized so that $J^2 = \\hbar^2 j(j + 1)$, where $j$ is the total angular momentum quantum number."^^ . . . . . . . . "http://en.wikipedia.org/wiki/Angular_momentum#Spin.2C_orbital.2C_and_total_angular_momentum"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "J" . . "Total Angular Momentum"@en . . . "The \"Total Angular Quantum Number\" describes the magnitude of total angular momentum $J$, where $j$ refers to a specific particle and $J$ is used for the whole system."^^ . . . "http://en.wikipedia.org/wiki/Quantum_number"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "j" . . "Total Angular Momentum Quantum Number"@en . . . . . . "The \"Total Atomic Stopping Power\" for an ionizing particle passing through an element, is the particle's energy loss per atom within a unit area normal to the particle's path; equal to the linear energy transfer (energy loss per unit path length) divided by the number of atoms per unit volume."^^ . . . . "http://www.answers.com/topic/atomic-stopping-power"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$S_a = \\frac{S}{n}$, where $S$ is the total linear stopping power and $n$ is the number density of the atoms in the substance."^^ . "The \"Total Atomic Stopping Power\" for an ionizing particle passing through an element, is the particle's energy loss per atom within a unit area normal to the particle's path; equal to the linear energy transfer (energy loss per unit path length) divided by the number of atoms per unit volume." . "S_a" . . "Total Atomic Stopping Power"@en . . "\"Total Cross-section\" is related to the absorbance of the light intensity through Beer-Lambert's law. It is the sum of all cross-sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target particle."^^ . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Cross_section_(physics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "\"Total Cross-section\" is related to the absorbance of the light intensity through Beer-Lambert's law. It is the sum of all cross-sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target particle." . "\u03C3\u209C" . . "Total Cross-section"@en . . . "\"Total Current\" is the sum of the electric current that is flowing through a surface and the displacement current."^^ . . . . . . . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$I_{tot}= I + I_D$, where $I$ is electric current and $I_D$ is displacement current."^^ . "\"Total Current\" is the sum of the electric current that is flowing through a surface and the displacement current." . "I_t" . "I_{tot}" . . "Total Current"@en . . . . "\"Total Current Density\" is the sum of the electric current density and the displacement current density."^^ . . . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$J_{tot}= J + J_D$, where $J$ is electric current density and $J_D$ is displacement current density."^^ . "$J_{tot}$"^^ . "\"Total Current Density\" is the sum of the electric current density and the displacement current density." . . "Total Current Density"@en . . . . "\"Total Ionization\" by a particle, total mean charge, divided by the elementary charge, $e$, of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles."^^ . . . "http://en.wikipedia.org/wiki/Ionization#Classical_ionization"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$N = \\int N_i dl$."^^ . "N_i" . . "Total Ionization"@en . . "The \"Total Linear Stopping Power\" is defined as the average energy loss of the particle per unit path length."^^ . . . . . . "0112/2///62720#UAD203" . "http://en.wikipedia.org/wiki/Stopping_power_(particle_radiation)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$S = -\\frac{dE}{dx}$, where $-dE$ is the energy decrement in the $x-direction$ along an elementary path with the length $dx$."^^ . "The \"Total Linear Stopping Power\" is defined as the average energy loss of the particle per unit path length." . "S" . . "Total Linear Stopping Power"@en . . "If a substance is compared in gaseous and solid form, then the linear stopping powers of the two states are very different just because of the different density. One therefore often divides S(E) by the density of the material to obtain the \"Mass Stopping Power\". The mass stopping power then depends only very little on the density of the material."^^ . . . . . "0112/2///62720#UAD204" . "http://en.wikipedia.org/wiki/Stopping_power_(particle_radiation)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31895"^^ . "$S_m = \\frac{S}{\\rho}$, where $S$ is the total linear stopping power and $\\rho$ is the mass density of the sample."^^ . "If a substance is compared in gaseous and solid form, then the linear stopping powers of the two states are very different just because of the different density. One therefore often divides S(E) by the density of the material to obtain the \"Mass Stopping Power\". The mass stopping power then depends only very little on the density of the material." . "S_m" . . "Total Mass Stopping Power"@en . . " The total pressure is the sum of the dynamic and static pressures, that is $P_0 = P + q$."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "P_0" . . "Total Pressure"@en . . . "ratio between the differential change in the energy fluence d\u03A8 and the time interval dt: \u03C8 = d\u03A8 / dt; the total radiance is identical to the product of the particle flux density and the average energy of the particles"@en . . "Quotient aus der differentiellen \u00C4nderung der Energiefluenz d\u03A8 im Zeitintervall dt: \u03C8 = d\u03A8 / dt; die Energieflussdichte ist identisch mit dem Produkt der Teilchenflussdichte und der mittleren Teilchenenergie"@de . "0173-1#Z4-BAJ318#002" . . "total radiance"@en-US . . "\"Touch Thresholds\" are thresholds for touch, vibration and other stimuli to the skin."^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\overline{T_t}$"^^ . "\"Touch Thresholds\" are thresholds for touch, vibration and other stimuli to the skin." . . "Touch Thresholds"@en . . "number of all simultaneously occupied units in a particular group of units"@en . . "0112/2///62720#UAD205" . "Anzahl aller gleichzeitig belegten Einrichtungen in einer bestimmten Gruppe von einrichtungen"@de . "0173-1#Z4-BAJ462#001" . . "traffic intensity" . "traffic intensity"@en-US . . "relationship between rotational and longitudinal movements as a measure of how an angle is converted into a linear path"@en . . "Zusammenhang zwischen Dreh- und L\u00E4ngsbewegung als Ma\u00DF daf\u00FCr, wie ein \u00FCberstrichener Drehwinkel in eine lineare Wegstrecke umgesetzt wird"@de . "0173-1#Z4-BAJ400#003" . . "transmission ratio between rotation and translation"@en-US . . "Transmittance is the fraction of incident light (electromagnetic radiation) at a specified wavelength that passes through a sample."^^ . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Transmittance"^^ . "$\\tau = \\frac{\\Phi_t}{\\Phi_m}$, where $\\Phi_t$ is the transmitted radiant flux or the transmitted luminous flux, and $\\Phi_m$ is the radiant flux or luminous flux of the incident radiation."^^ . "$\\tau, T$"^^ . "Transmittance is the fraction of incident light (electromagnetic radiation) at a specified wavelength that passes through a sample." . "belongs to SOQ-ISO" . . "Transmittance"@en . . . "Transmittance is the fraction of incident light (electromagnetic radiation) at a specified wavelength that passes through a sample."^^ . . . "$A_{10}(\\lambda) = -lg(\\tau(\\lambda))$, where $\\tau$ is the transmittance at a given wavelength $\\lambda$."^^ . "Transmittance is the fraction of incident light (electromagnetic radiation) at a specified wavelength that passes through a sample." . "A_10, D" . . "Transmittance Density"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "u_{e}" . . "True Exhaust Velocity"@en . . . "Turbidity is the cloudiness or haziness of a fluid, or of air, caused by individual particles (suspended solids) that are generally invisible to the naked eye, similar to smoke in air. Turbidity in open water is often caused by phytoplankton and the measurement of turbidity is a key test of water quality. The higher the turbidity, the higher the risk of the drinkers developing gastrointestinal diseases, especially for immune-compromised people, because contaminants like virus or bacteria can become attached to the suspended solid. The suspended solids interfere with water disinfection with chlorine because the particles act as shields for the virus and bacteria. Similarly suspended solids can protect bacteria from UV sterilisation of water. Fluids can contain suspended solid matter consisting of particles of many different sizes. While some suspended material will be large enough and heavy enough to settle rapidly to the bottom container if a liquid sample is left to stand (the settleable solids), very small particles will settle only very slowly or not at all if the sample is regularly agitated or the particles are colloidal. These small solid particles cause the liquid to appear turbid."^^ . . "http://dbpedia.org/resource/Turbidity"^^ . . "http://en.wikipedia.org/wiki/Turbidity"^^ . "Turbidity is the cloudiness or haziness of a fluid, or of air, caused by individual particles (suspended solids) that are generally invisible to the naked eye, similar to smoke in air. Turbidity in open water is often caused by phytoplankton and the measurement of turbidity is a key test of water quality. The higher the turbidity, the higher the risk of the drinkers developing gastrointestinal diseases, especially for immune-compromised people, because contaminants like virus or bacteria can become attached to the suspended solid. The suspended solids interfere with water disinfection with chlorine because the particles act as shields for the virus and bacteria. Similarly suspended solids can protect bacteria from UV sterilisation of water. Fluids can contain suspended solid matter consisting of particles of many different sizes. While some suspended material will be large enough and heavy enough to settle rapidly to the bottom container if a liquid sample is left to stand (the settleable solids), very small particles will settle only very slowly or not at all if the sample is regularly agitated or the particles are colloidal. These small solid particles cause the liquid to appear turbid." . . "Turbidity"@en . . "\"Turns\" is the number of turns in a winding."^^ . . . "\"Turns\" is the number of turns in a winding." . "N" . . "Turns"@en . . . "unsteady rotation of a body resulting from an anxious distribution of mass, expressed as the product of radius and related mass"@en . . . "0112/2///62720#UAD206" . "durch ungleichm\u00E4\u00DFige Masseverteilung bedingter, unruhiger Lauf rotierender K\u00F6rper, ausgedr\u00FCckt als Produkt aus dem Radius und einer zugeh\u00F6rigen Masse"@de . "0173-1#Z4-BAJ432#001" . . "unbalance" . "unbalance"@en-US . . "Placeholder value used for reference from units where it is not clear what a given unit is a measure of."@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Unknown"@en . . "\"Upper Critical Magnetic Flux Density\" for type II superconductors, is the threshold magnetic flux density for disappearance of bulk superconductivity."^^ . . . . . . . . . . . . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "\"Upper Critical Magnetic Flux Density\" for type II superconductors, is the threshold magnetic flux density for disappearance of bulk superconductivity." . "B_{c2}" . . "Upper Critical Magnetic Flux Density"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . "$VT$"^^ . . . "Vacuum Thrust"@en . . . "Vapour permeability, or \"Breathability\" in a building refers to the ease with which water vapour passes through building elements. Building elements where vapour permeability is poorly designed can result in condensation, leading to unhealthy living environments and degradation of fabric."^^ . . . . . . . . "https://www.designingbuildings.co.uk/wiki/Vapour_Permeability"^^ . "Vapour permeability, or \"Breathability\" in a building refers to the ease with which water vapour passes through building elements. Building elements where vapour permeability is poorly designed can result in condensation, leading to unhealthy living environments and degradation of fabric." . . "Vapor Permeability"@en . . "A pressure that is the one exerted by a substance vapor in thermodynamic equilibrium with either its solid or liquid phase at a given temperature in a closed system."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "A pressure that is the one exerted by a substance vapor in thermodynamic equilibrium with either its solid or liquid phase at a given temperature in a closed system." . . "Vapor Pressure"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "V" . . "Vehicle Velocity"@en . . . "In kinematics, velocity is the speed of an object and a specification of its direction of motion. Speed describes only how fast an object is moving, whereas velocity gives both how fast and in what direction the object is moving. "^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Velocity"^^ . . . "0112/2///62720#UAD236" . "http://en.wikipedia.org/wiki/Velocity"^^ . "In kinematics, velocity is the speed of an object and a specification of its direction of motion. Speed describes only how fast an object is moving, whereas velocity gives both how fast and in what direction the object is moving. " . . "v" . . "Geschwindigkeit"@de . "Halaju"@ms . "Rychlost"@cs . "hitrost"@sl . "h\u0131z"@tr . "pr\u0119dko\u015B\u0107"@pl . "velocidad"@es . "velocidade"@pt . "velocitas"@la . "velocity"@en . "velocit\u00E0"@it . "vitesse"@fr . "vitez\u0103"@ro . "\u0395\u03C0\u03B9\u03C6\u03AC\u03BD\u03B5\u03B9\u03B1"@el . "\u0421\u043A\u043E\u0301\u0440\u043E\u0441\u0442\u044C"@ru . "\u05DE\u05D4\u05D9\u05E8\u05D5\u05EA"@he . "\u0627\u0644\u0633\u0631\u0639\u0629"@ar . "\u0633\u0631\u0639\u062A/\u062A\u0646\u062F\u06CC"@fa . "\u0917\u0924\u093F"@hi . "\u901F\u529B"@ja . "\u901F\u5EA6"@zh . "rapidez"@es . "\u0935\u0947\u0917"@hi . . "Ventilation Rate is often expressed by the volumetric flowrate of outdoor air introduced to a building. However, ASHRAE now recommends ventilation rates dependent upon floor area."^^ . . . "https://en.wikipedia.org/wiki/Ventilation_(architecture)#Ventilation_rates_for_indoor_air_quality"^^ . "Ventilation Rate is often expressed by the volumetric flowrate of outdoor air introduced to a building. However, ASHRAE now recommends ventilation rates dependent upon floor area." . . "Ventilation Rate per Floor Area"@en . . "The rate at which a body moves upwards at an angle of 90 degrees to the ground. It is the component of a projectile's velocity which is concerned with lifting the projectile."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "The rate at which a body moves upwards at an angle of 90 degrees to the ground. It is the component of a projectile's velocity which is concerned with lifting the projectile." . "V_{Z}" . . "Vertical Velocity"@en . . . "Frame rate (also known as frame frequency) is the frequency (rate) at which an imaging device produces unique consecutive images called frames. The term applies equally well to computer graphics, video cameras, film cameras, and motion capture systems. Frame rate is most often expressed in frames per second (FPS) and is also expressed in progressive scan monitors as hertz (Hz)."^^ . . . "http://en.wikipedia.org/wiki/Frame_rate"^^ . "Frame rate (also known as frame frequency) is the frequency (rate) at which an imaging device produces unique consecutive images called frames. The term applies equally well to computer graphics, video cameras, film cameras, and motion capture systems. Frame rate is most often expressed in frames per second (FPS) and is also expressed in progressive scan monitors as hertz (Hz)." . . "Video Frame Rate"@en . . . "Viscosity is a measure of the resistance of a fluid which is being deformed by either shear stress or extensional stress. In general terms it is the resistance of a liquid to flow, or its \"thickness\". Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction. [Wikipedia]. In general conversation or in non-scientific contexts, if someone refers to the viscosity of a fluid, they're likely talking about its dynamic (or absolute) viscosity. However, in engineering or scientific contexts, it's essential to clarify which type of viscosity is being discussed, as the interpretation and use of the data may differ depending on whether one is talking about dynamic or kinematic viscosity."^^ . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Viscosity"^^ . . . "Viscosity is a measure of the resistance of a fluid which is being deformed by either shear stress or extensional stress. In general terms it is the resistance of a liquid to flow, or its \"thickness\". Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction. [Wikipedia]. In general conversation or in non-scientific contexts, if someone refers to the viscosity of a fluid, they're likely talking about its dynamic (or absolute) viscosity. However, in engineering or scientific contexts, it's essential to clarify which type of viscosity is being discussed, as the interpretation and use of the data may differ depending on whether one is talking about dynamic or kinematic viscosity." . . "Viscosity"@en . . "\"Visible Radiant Energy\", also known as luminous energy, is the energy of electromagnetic waves. It is energy of the particles that are emitted, transferred, or received as radiation."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Radiant_energy"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31892"^^ . "Q"^^ . "\"Visible Radiant Energy\", also known as luminous energy, is the energy of electromagnetic waves. It is energy of the particles that are emitted, transferred, or received as radiation." . "Q" . . "Visible Radiant Energy"@en . . . . "\"Vision Thresholds\" is an abstract term to refer to a variety of measures for the thresholds of sensitivity of the eye."^^ . . "http://en.wikipedia.org/wiki/Absolute_threshold#Vision"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\overline{T_v}$"^^ . "\"Vision Thresholds\" is the thresholds of sensitivity of the eye." . . "Vision Thresholds"@en . . "$\\textit{Voltage}$, also referred to as $\\textit{Electric Tension}$, is the difference between electrical potentials of two points. For an electric field within a medium, $U_{ab} = - \\int_{r_a}^{r_b} E . {dr}$, where $E$ is electric field strength.\nFor an irrotational electric field, the voltage is independent of the path between the two points $a$ and $b$."^^ . . . . . . . . . . . . . . . . . . "0112/2///62720#UAD237" . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$U_{ab} = V_a - V_b$, where $V_a$ and $V_b$ are electric potentials at points $a$ and $b$, respectively."^^ . "$U_{ab}$"^^ . "U" . . "Voltage"@en . . . . "true"^^ . . . . . "Voltage Percentage"@en . . . "\"Voltage Phasor\" is a representation of voltage as a sinusoidal integral quantity using a complex quantity whose argument is equal to the initial phase and whose modulus is equal to the root-mean-square value. A phasor is a constant complex number, usually expressed in exponential form, representing the complex amplitude (magnitude and phase) of a sinusoidal function of time. Phasors are used by electrical engineers to simplify computations involving sinusoids, where they can often reduce a differential equation problem to an algebraic one."^^ . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-26"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "When $u = \\hat{U} \\cos{(\\omega t + \\alpha)}$, where $u$ is the voltage, $\\omega$ is angular frequency, $t$ is time, and $\\alpha$ is initial phase, then $\\underline{U} = Ue^{ja}$."^^ . "$\\underline{U}$"^^ . "\"Voltage Phasor\" is a representation of voltage as a sinusoidal integral quantity using a complex quantity whose argument is equal to the initial phase and whose modulus is equal to the root-mean-square value. A phasor is a constant complex number, usually expressed in exponential form, representing the complex amplitude (magnitude and phase) of a sinusoidal function of time. Phasors are used by electrical engineers to simplify computations involving sinusoids, where they can often reduce a differential equation problem to an algebraic one." . . "Voltage Phasor"@en . . . . . . . . . . . . . . . . . . . . "Voltage Ratio"@en . . . "The volume of a solid object is the three-dimensional concept of how much space it occupies, often quantified numerically. One-dimensional figures (such as lines) and two-dimensional shapes (such as squares) are assigned zero volume in the three-dimensional space."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Volume"^^ . . "0112/2///62720#UAD238" . "The volume of a solid object is the three-dimensional concept of how much space it occupies, often quantified numerically. One-dimensional figures (such as lines) and two-dimensional shapes (such as squares) are assigned zero volume in the three-dimensional space." . . . "Volume"@en . . "volume density of the electric charge Q present in a volume V"@en . . "r\u00E4umliche Dichte der in einem Raumgebiet vom Volumen V enthaltenen elektrischen Ladung Q"@de . "0173-1#Z4-BAJ368#002" . . "volume density of charge"@en-US . . "Volumetric Flow Rate, (also known as volume flow rate, rate of fluid flow or volume velocity) is the volume of fluid which passes through a given surface per unit time."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "0112/2///62720#UAD239" . "http://en.wikipedia.org/wiki/Volumetric_flow_rate"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$q_V = \\frac{dV}{dt}$, where $V$ is volume and $t$ is time."^^ . "Volumetric Flow Rate, (also known as volume flow rate, rate of fluid flow or volume velocity) is the volume of fluid which passes through a given surface per unit time." . "q_V" . . "Volume Flow Rate"@en . . . . "0112/2///62720#UAD183" . . "surface\u2011related volume flow rate" . . "\"Volume Fraction\" is the volume of a constituent divided by the volume of all constituents of the mixture prior to mixing. Volume fraction is also called volume concentration in ideal solutions where the volumes of the constituents are additive (the volume of the solution is equal to the sum of the volumes of its ingredients)."^^ . . . . . . . . . . . . . "0112/2///62720#UAD240" . "http://en.wikipedia.org/wiki/Volume_fraction"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31894"^^ . "$\\varphi_B = \\frac{x_B V_{m,B}^*}{\\sum x_i V_{m,i}^*}$, where $V_{m,i}^*$ is the molar volume of the pure substances $i$ at the same temperature and pressure, $x_i$ denotes the amount-of-substance fraction of substance $i$, and $\\sum$ denotes summation over all substances $i$."^^ . "$\\varphi_B$"^^ . "\"Volume Fraction\" is the volume of a constituent divided by the volume of all constituents of the mixture prior to mixing. Volume fraction is also called volume concentration in ideal solutions where the volumes of the constituents are additive (the volume of the solution is equal to the sum of the volumes of its ingredients)." . . . . "Volume Fraction"@en . . . "domain completely enclosed by a surface, which can be determined for Cartesian coordinates by integration according to the following equation: V = \u222B\u222B\u222B dx dy dz or for a homogeneous material, it is the ratio of the moment of inertia and the distance to any point on the neutral axis at which the stress is to be calculated"@en . . "der von einer Oberfl\u00E4che eingeschlossene gesamte Rauminhalt, der f\u00FCr kartesische Koordinaten durch Integration nach folgender Gleichung ermittelt werden kann: V = \u222B\u222B\u222B dx dy dz oder bei einem homogenen Werkstoff Quotient Tr\u00E4gheitsmoment dividiert durch den Abstand zu einem Punkt auf der neutralen Achse, bei dem die Belastung berechnet werden soll"@de . "0173-1#Z4-BAJ251#002" . . "volume or section modulus"@en-US . . . . . . "Volume per Unit Area"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Volume per Unit Time"@en . . "Volume, or volumetric, Strain, or dilatation (the relative variation of the volume) is the trace of the tensor $\\vartheta$."^^ . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Deformation_(mechanics)"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$\\vartheta = \\frac{\\Delta V}{V_0}$, where $\\Delta V$ is the increase in volume and $V_0$ is the volume in a reference state to be specified."^^ . "$\\vartheta$"^^ . . "Volume Strain"@en . . . "When the temperature of a substance changes, the energy that is stored in the intermolecular bonds between atoms changes. When the stored energy increases, so does the length of the molecular bonds. As a result, solids typically expand in response to heating and contract on cooling; this dimensional response to temperature change is expressed by its coefficient of thermal expansion.\n\nDifferent coefficients of thermal expansion can be defined for a substance depending on whether the expansion is measured by:\n\n * linear thermal expansion\n * area thermal expansion\n * volumetric thermal expansion\n\nThese characteristics are closely related. The volumetric thermal expansion coefficient can be defined for both liquids and solids. The linear thermal expansion can only be defined for solids, and is common in engineering applications.\n\nSome substances expand when cooled, such as freezing water, so they have negative thermal expansion coefficients. [Wikipedia]" . . . . . . . . "When the temperature of a substance changes, the energy that is stored in the intermolecular bonds between atoms changes. When the stored energy increases, so does the length of the molecular bonds. As a result, solids typically expand in response to heating and contract on cooling; this dimensional response to temperature change is expressed by its coefficient of thermal expansion.\n\nDifferent coefficients of thermal expansion can be defined for a substance depending on whether the expansion is measured by:\n\n * linear thermal expansion\n * area thermal expansion\n * volumetric thermal expansion\n\nThese characteristics are closely related. The volumetric thermal expansion coefficient can be defined for both liquids and solids. The linear thermal expansion can only be defined for solids, and is common in engineering applications.\n\nSome substances expand when cooled, such as freezing water, so they have negative thermal expansion coefficients. [Wikipedia]" . . "Volume Thermal Expansion"@en . . . . . . . . . . "0112/2///62720#UAD241" . . "volumic bit density" . . . "0112/2///62720#UAD242" . . "volumic electric charge" . . "quantity whose value is inversely proportional to the volume value"@en . . "Gr\u00F6\u00DFe, deren Wert sich umgekehrt proportional zum Volumenwert verh\u00E4lt"@de . "0173-1#Z4-BAJ377#003" . . "volumetric entity density"@en-US . . "In fluid dynamics, the volumetric flux is the rate of volume flow across a unit area (m3\u00B7s\u22121\u00B7m\u22122).[Wikipedia]"^^ . . . . "https://en.wikipedia.org/wiki/Volumetric_flux"^^ . "In fluid dynamics, the volumetric flux is the rate of volume flow across a unit area (m3\u00B7s\u22121\u00B7m\u22122).[Wikipedia]" . . . . "Volumetric Flux"@en . . "$\\textit{Volumetric Heat Capacity (VHC)}$, also termed $\\textit{volume-specific heat capacity}$, describes the ability of a given volume of a substance to store internal energy while undergoing a given temperature change, but without undergoing a phase transition. It is different from specific heat capacity in that the VHC is a $\\textit{per unit volume}$ measure of the relationship between thermal energy and temperature of a material, while the specific heat is a $\\textit{per unit mass}$ measure (or occasionally per molar quantity of the material)."^^ . . . . "http://dbpedia.org/resource/Volumetric_heat_capacity"^^ . . "http://en.wikipedia.org/wiki/Volumetric_heat_capacity"^^ . . "Volumetric Heat Capacity"@en . . . "0112/2///62720#UAD243" . . "volumic output power" . . "quantity proportional to the number of single particles of a defined type present in a given sample, divided by the related volume of this sample"@en . . "Gr\u00F6\u00DFe proportional der Anzahl von Einzelteilchen festgelegter Art, die in einer gegebenen Substanzprobe enthalten sind, dividiert durch das zugeh\u00F6rige Volumen dieser Substanzprobe"@de . "0173-1#Z4-BAJ402#002" . . "volumic amount of substance"@en-US . . "amount of data, which is usually dependent on the respective complexity of the information or its coding procedure, divided by the related volume"@en . . "Anzahl von Daten, die in der Regel abh\u00E4ngig von der jeweiligen Komplexit\u00E4t der Information oder deren Codierungsverfahren ist, dividiert durch das zugeh\u00F6rige Volumen"@de . "0173-1#Z4-BAJ401#002" . . "volumic data quantity"@en-US . . "$\\textit{Volumic Electromagnetic Energy}$, also known as the $\\textit{Electromagnetic Energy Density}$, is the energy associated with an electromagnetic field, per unit volume of the field."^^ . . . . "http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-64"^^ . "http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=31891"^^ . "$w = (1/2) ( \\mathbf{E} \\cdot \\mathbf{D} + \\mathbf{B} \\cdot \\mathbf{H})$, where $\\mathbf{E}$ is electric field strength, $\\mathbf{D}$ is electric flux density, $\\mathbf{M}$ is magnetic flux density, and $\\mathbf{H}$ is magnetic field strength."^^ . "$w$"^^ . . "Volumic Electromagnetic Energy"@en . . . . . . "ratio released power divided by volume"@en . . "Quotient freigesetzte W\u00E4rmeleistung durch Volumen"@de . "0173-1#Z4-BAJ366#003" . . "volumic output"@en-US . . "In the simplest sense, vorticity is the tendency for elements of a fluid to \"spin.\" More formally, vorticity can be related to the amount of \"circulation\" or \"rotation\" (or more strictly, the local angular rate of rotation) in a fluid. The average vorticity in a small region of fluid flow is equal to the circulation C around the boundary of the small region, divided by the area A of the small region. Mathematically, vorticity is a vector field and is defined as the curl of the velocity field."^^ . . . . . . . . . . . . "$\\omega$"^^ . "In the simplest sense, vorticity is the tendency for elements of a fluid to \"spin.\" More formally, vorticity can be related to the amount of \"circulation\" or \"rotation\" (or more strictly, the local angular rate of rotation) in a fluid. The average vorticity in a small region of fluid flow is equal to the circulation C around the boundary of the small region, divided by the area A of the small region. Mathematically, vorticity is a vector field and is defined as the curl of the velocity field." . . "Vorticity"@en . . . "\"Warm Receptor Threshold\" is the threshold of warm-sensitive free nerve-ending."^^ . . "http://www.iso.org/iso/catalogue_detail?csnumber=43012"^^ . "$\\overline{T_w}$"^^ . "\"Warm Receptor Threshold\" is the threshold of warm-sensitive free nerve-ending." . . "Warm Receptor Threshold"@en . . "The \"Warping Constant\" is a measure for the warping constant or warping resistance of a cross section under torsional loading. It is usually measured in m\u2076."^^ . . . . "https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/link/ifcwarpingconstantmeasure.htm"^^ . "The \"Warping Constant\" is a measure for the warping constant or warping resistance of a cross section under torsional loading. It is usually measured in m\u2076." . . "Warping Constant"@en . . "The warping moment measure is a measure for the warping moment, which occurs in warping torsional analysis. It is usually measured in kNm\u00B2."^^ . . . . "https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD1/HTML/link/ifcwarpingmomentmeasure.htm"^^ . "The warping moment measure is a measure for the warping moment, which occurs in warping torsional analysis. It is usually measured in kNm\u00B2." . . "Warping Moment"@en . . "No pump can convert all of its mechanical power into water power. Mechanical power is lost in the pumping process due to friction losses and other physical losses. It is because of these losses that the horsepower going into the pump has to be greater than the water horsepower leaving the pump. The efficiency of any given pump is defined as the ratio of the water horsepower out of the pump compared to the mechanical horsepower into the pump."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "https://www.uaex.edu/environment-nature/water/docs/IrrigSmart-3241-A-Understanding-water-horsepower.pdf"^^ . . "Water Horsepower"@en . . . . . "https://www.wufi-wiki.com/mediawiki/index.php/Details:WaterVaporDiffusion"^^ . "The Water vapour diffusion coefficient describes how easy vapor diffusion happens in a given material." . . "Wasserdampfdiffusionsleitkoeffizient"@de . "Water vapour diffusion coefficient"@en . . "mass of water vapour passing a surface divided by the area of this surface, the pressure difference, and the corresponding time"@en . . . . "0112/2///62720#UAD244" . "Masse des durch eine Fl\u00E4che hindurchtretenden Wasserdampfes, dividiert durch den Fl\u00E4cheninhalt dieser Fl\u00E4che, die Druckdifferenz und die dazugeh\u00F6rige Zeit"@de . "0173-1#Z4-BAJ446#001" . . "water vapour permeability" . "water vapour permeability"@en-US . . "For a monochromatic wave, \"wavelength\" is the distance between two successive points in a direction perpendicular to the wavefront where at a given instant the phase differs by $2\\pi$. The wavelength of a sinusoidal wave is the spatial period of the wave\u2014the distance over which the wave's shape repeats. The SI unit of wavelength is the meter."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Wavelength"^^ . "$\\lambda = \\frac{c}{\\nu}$, where $\\lambda$ is the wave length, $\\nu$ is the frequency, and $c$ is the speed of light in the medium."^^ . "\u03BB" . "belongs to SOQ-ISO" . . "Jarak gelombang"@ms . "Vlnov\u00E9 d\u00E9lka"@cs . "Wellenl\u00E4nge"@de . "comprimento de onda"@pt . "dalga boyu"@tr . "longitud de onda"@es . "longueur d'onde"@fr . "lunghezza d'onda"@it . "wavelength"@en . "\u0434\u043B\u0438\u043D\u0430 \u0432\u043E\u043B\u043D\u044B"@ru . "\u0637\u0648\u0644 \u0645\u0648\u062C"@fa . "\u6CE2\u957F"@zh . . . "\"Wavenumber\" is the spatial frequency of a wave - the number of waves that exist over a specified distance. More formally, it is the reciprocal of the wavelength. It is also the magnitude of the wave vector. Light passing through different media keeps its frequency, but not its wavelength or wavenumber. The unit for wavenumber commonly used in spectroscopy is centimetre to power minus one, PER-CM, rather than metre to power minus one, PER-M."^^ . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Wavenumber"^^ . "$\\sigma = \\frac{\\nu}{c}$, where $\\sigma$ is the wave number, $\\nu$ is the frequency, and $c$ is the speed of light in the medium.\n\nOr:\n\n$k = \\frac{2\\pi}{\\lambda}= \\frac{2\\pi\\upsilon}{\\upsilon_p}=\\frac{\\omega}{\\upsilon_p}$, where $\\upsilon$ is the frequency of the wave, $\\lambda$ is the wavelength, $\\omega = 2\\pi \\upsilon$ is the angular frequency of the wave, and $\\upsilon_p$ is the phase velocity of the wave."^^ . "$\\sigma$"^^ . "\"Wavenumber\" is the spatial frequency of a wave - the number of waves that exist over a specified distance. More formally, it is the reciprocal of the wavelength. It is also the magnitude of the wave vector. Light passing through different media keeps its frequency, but not its wavelength or wavenumber. The unit for wavenumber commonly used in spectroscopy is centimetre to power minus one, PER-CM, rather than metre to power minus one, PER-M." . . . "Bilangan gelombang"@ms . "Liczba falowa"@pl . "Repetenz"@de . "Vlnov\u00E9 \u010D\u00EDslo"@cs . "dalga say\u0131s\u0131"@tr . "nombre d'onde"@fr . "numero d'onda"@it . "n\u00FAmero de ola"@es . "n\u00FAmero de onda"@pt . "valovno \u0161tevilo"@sl . "wavenumber"@en . "\u0412\u043E\u043B\u043D\u043E\u0432\u043E\u0435 \u0447\u0438\u0441\u043B\u043E"@ru . "\u0639\u062F\u062F \u0627\u0644\u0645\u0648\u062C\u0629"@ar . "\u0639\u062F\u062F \u0645\u0648\u062C"@fa . "\u6CE2\u6570"@ja . "\u6CE2\u6570"@zh . . "Wellenzahl"@de . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Web Time" . . "Web Time"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Web Time Average Pressure"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . "Web Time Avg Thrust (Mlbf)" . . "Web Time Average Thrust"@en . . . "The force with which a body is attracted toward an astronomical body. Or, the product of the mass of a body and the acceleration acting on a body. In a dynamic situation, the weight can be a multiple of that under resting conditions. Weight also varies on other planets in accordance with their gravity."^^ . . . . . . . . . . . . . . . . . . . . . . . . "http://dbpedia.org/resource/Weight"^^ . . "http://en.wikipedia.org/wiki/Weight"^^ . "The force with which a body is attracted toward an astronomical body. Or, the product of the mass of a body and the acceleration acting on a body. In a dynamic situation, the weight can be a multiple of that under resting conditions. Weight also varies on other planets in accordance with their gravity." . "bold letter W" . . "A\u011F\u0131rl\u0131k"@tr . "Berat"@ms . "Gewicht"@de . "Si\u0142a ci\u0119\u017Cko\u015Bci"@pl . "forza peso"@it . "greutate"@ro . "peso"@es . "peso"@pt . "poids"@fr . "t\u00EDha"@cs . "weight"@en . "\u0412\u0435\u0441"@ru . "\u0648\u0632\u0646"@ar . "\u0648\u0632\u0646"@fa . "\u91CD\u3055"@ja . "\u91CD\u91CF"@zh . . . "\"Width\" is the middle of three dimensions: length, width, thickness."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "\"Width\" is the middle of three dimensions: length, width, thickness." . . "Width"@en . . . "$\\textit{Work}$ or $net\\ work$ is equal to the change in kinetic energy. \n This relationship is called the work-energy theorem: \n $$Wnet = K. E._f K. E._o $$$\n where $K. E._f$ is the final kinetic energy and $K. E._o$ is the original kinetic energy. \n Potential energy, also referred to as stored energy, is the ability of a system to do work due \n to its position or internal structure. \n Change in potential energy is equal to work. \n The potential energy equations can also be derived from the integral form of work:\n $$\\Delta P. E. = W = \\int F \\cdot dx$$.\n "^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Work_(physics)"^^ . "http://www.cliffsnotes.com/study_guide/Work-and-Energy.topicArticleId-10453,articleId-10418.html"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31889"^^ . "$A = \\int Pdt$, where $P$ is power and $t$ is time."^^ . "A force is said to do Work when it acts on a body so that there is a displacement of the point of application, however small, in the direction of the force. The concepts of work and energy are closely tied to the concept of force because an applied force can do work on an object and cause a change in energy. Energy is defined as the ability to do work. Work is done on an object when an applied force moves it through a distance. Kinetic energy is the energy of an object in motion. The net work is equal to the change in kinetic energy." . "A" . . "Arbeit"@de . "delo"@sl . "i\u015F"@tr . "kerja"@ms . "lavoro"@it . "lucru mecanic"@ro . "praca"@pl . "pr\u00E1ce"@cs . "trabajo"@es . "trabalho"@pt . "travail"@fr . "work"@en . "\u06A9\u0627\u0631"@fa . "\u0915\u093E\u0930\u094D\u092F"@hi . "\u4ED5\u4E8B\u91CF"@ja . "\u529F"@zh . . . "\"Work Function\" is the energy difference between an electron at rest at infinity and an electron at a certain energy level. The minimum energy (usually measured in electronvolts) needed to remove an electron from a solid to a point immediately outside the solid surface (or energy needed to move an electron from the Fermi level into vacuum)."^^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "http://en.wikipedia.org/wiki/Work_function"^^ . "http://www.iso.org/iso/catalogue_detail?csnumber=31897"^^ . "$\\Phi$"^^ . "\"Work Function\" is the energy difference between an electron at rest at infinity and an electron at a certain energy level. The minimum energy (usually measured in electronvolts) needed to remove an electron from a solid to a point immediately outside the solid surface (or energy needed to move an electron from the Fermi level into vacuum)." . . "Work Function"@en . . . . "QUDT Quantity Kinds Vocabulary Catalog Entry v1.2" . . "Jack Hodges" . "Simon J D Cox" . "Steve Ray" . "2019-08-01T16:25:54.850+00:00"^^ . "Ralph Hodgson" . "Steve Ray" . "Provides the set of all quantity kinds."^^ . "2024-03-22T16:32:43.842-04:00"^^ . "The QUDT Ontologies are issued under a Creative Commons Attribution 4.0 International License (CC BY 4.0), available at https://creativecommons.org/licenses/by/4.0/. Attribution should be made to QUDT.org" . "QUANTITY-KINDS-ALL" . "QUDT Quantity Kinds Version 2.1 Vocabulary" . "All disciplines" . "Science, Medicine and Engineering" . "2019-08-01T21:26:38"^^ . "QUDT Quantity Kinds Version 2.1.37" . . "Provides a vocabulary of all quantity kinds." . . "https://qudt.org/doc/2024/03/DOC_VOCAB-QUANTITY-KINDS-ALL-v2.1.html"^^ . "https://qudt.org/linkedmodels.org/assets/lib/lm/images/logos/qudt_logo-300x110.png" . "http://qudt.org/vocab/quantitykind/"^^ . "quantitykind" . "qudt.org" . "https://qudt.org/doc/2024/02/DOC_VOCAB-QUANTITY-KINDS-ALL-v2.1.html"^^ . "2.1" . "1"^^ . "http://qudt.org/vocab/quantitykind"^^ . . . . . . . . . . . . . . . . . . . . . . . "QUDT Quantity Kind Vocabulary Metadata Version 2.1.37" .